Learning from networked examples in a k-partite graph*

Yuyi Wang!, Jan Ramon!, et Zheng-Chu Guo?

'KULeuven, Belgium
2University of Exeter, UK

June 4, 2013

Abstract

Many machine learning algorithms are based on the
assumption that training examples are drawn indepen-
dently. However, this assumption does not hold any-
more when learning from a networked examples, i.e.
examples sharing pieces of information (such as vertices
or edges). We propose an efficient weighting method
for learning from networked examples and show a sam-
ple error bound which is better than previous work.

Keywords: Learning theory, Networked examples,
Non-independent sample, Sample error, Generalization
bound.

1 Introduction

In supervised learning, a labeled training sample for
learning takes the form Z = {z;}}", with z; =
(xi,i) € (X x) where X is called the feature space
or the input space, and) is called the label space or
the output space. A standard assumption is that the
training examples z; from Z are drawn independently
and identically (i.i.d.) from a probability distribution
pon Z=Xx).

In this paper, we consider a setting where examples
share part of their features. The i.i.d. assumption
does not always hold in this setting. For instance,
suppose that we are interested in predicting whether
a given person likes a given movie. We could ask a
set of persons to grade five of the movies they have
seen in the past. Then, we want to predict for a new
visitor (drawn from the same distribution as our train-
ing persons) whether he will like a newly introduced
movie (having features drawn from the same distribu-
tion as the movies in the past). Our training examples

*A longer version of this paper
http://arxiv.org/abs/1306.0393 [arXiv:1306.0393].

appears at

(containing a person ID, a movie ID and a grade) are
not all independent since each person graded several
movies and all movies were graded by several persons.
Still, we would like to get a generalization guarantee.

A naive method would be to ignore the problem and
treat the training examples as independent examples.
The result in |] showed that a larger number of
possibly non-independent examples would not neces-
sarily mean that a more accurate model can be con-
structed.

Another straightforward method is to first find a sub-
set of the training examples which are independent and
then learn from these. Though we can directly use
existing results to bound the sample error of this ap-
proach, it is inherently difficult to find a sufficiently
large independent set of training examples. Moreover,
we will show that possibly not all available information
is used and the solution is suboptimal.

In this paper, we propose a novel approach to learn
from networked examples. In our method, we first com-
pute nonnegative weights for all training examples. Us-
ing these weighted examples, we show that we can get
better bounds of the sample error than the two meth-
ods above. It is an advantage that the weights of the
examples are efficiently computable.

The remainder of this paper is organized as follows.
We introduce networked training examples in Section
2. We review some basic concepts of statistical learn-
ing theory in Section 3. The related work is discussed
in Section 4, and this section mainly gives the sam-
ple error bounds of learning from networked data if we
treat the data as i.i.d.. In Section 5, we consider the
above-mentioned method that first select a set of inde-
pendent training examples. In Section 6, we propose
our network learning method. We derive weighted in-
equalities in Section 6.2, and they are used in Section
6.3 to estimate the sample error of the ERM algorithms
with networked training examples. Section 7 concludes

this paper with a summary of our contributions and a
discussion of future work.

2 Problem Statement

Before discussing our method, we first give a formal
problem statement.

2.1 The network

In this paper, we use a k-partite hypergraph G =
(V,E,X,Y,) to represent the network which induces
all the training examples. The set of vertices V is par-
titioned into k disjoint sets V) V@ VF) and
each hyperedge e €¢ E C V) x V) x ... x V() in-
tersects every set of the partition in exact one vertex.
The number of hyperedges is denoted by m, and the
cardinality of a partition V() is denoted by ns, i.e.,
|E| = m and |[V®)| = n;. The j-th vertex of the par-
tition V' is denoted by v(3) where 1 <j<n;. We
denote the i-th component of an edge e as e, which
is a vertex in V. Two edges e, and e, overlap if and
only if there exists 1 < i < k such that e,(li) = egi).

For instance, in our movie rating example we would
have a vertex set V1) of movies, a vertex set V2 of
persons (watching movies) and a set V(%) of movie rat-
ings. Hyperedges would be triple (m,p,r) € V) x
V@ % V) of a movie, a person and the rating this
person gave to that movie.

2.2 Features

Let X = XM x ... x X*) be a k-dimensional compact
metric space. Let ¢ : |J; ;e (VP = X)) be a func-
tion on the vertex set V assigning to every vertex v(*7)
in V) a feature ¢(v(*7)) = 2(9) drawn independently
and identically from a fized but unknown distribution
pi- We will call ¢(v(*9)) a feature, even though it may
be a compound object such as a vector. We also use the
notation ¢ as a function on hyperedges. For any hy-
peredge ¢, we call g(e) = [B(e)), d(e), .., p(e)]
the feature vector of e.

For instance, in our movie rating example,
¢ could assign to movies m € VO pairs
(genre,length), to persons p € V& a triple
(gender, age, nationality) and to a rating r € V©® a
pair (watching_time, movie_version). ¢ would there-
fore assign to every hyperedge a triple containing in
total 8 values.

2.3 Examples

Every hyperedge e; in E induces an example z; =
(xi,9:) € Z = X x Y. The feature vector of this ex-
ample is x; = ¢(e;). We will use XEJ) to denote the
Jj-th component of the feature vector x;. If egj) =
where 1 < I < nj, then the j-th component of the
feature of the training example z; is U, Thus,
xl(-]) = 200 = ¢(v@h). We can see that if two hy-
peredges overlap, then the two corresponding examples
are not independent (they share part of their features,
and hence drawing the one example puts restrictions on
the drawing of the other example). Given the features
x; of this example, the label y; follows a fixed but un-
known probability distribution py|x. We can then write
P(X,y) = pyx(X,y)px(x). The training dataset derived
from G is denoted by Z = {z;|e; € E'}, and it is called
a G-networked sample. The size of the sample Z is the
same as the number of hyperedges, so |Z| = m.

2.4 Independence assumption

We make the following assumptions:

e As in the traditional form of PAC-learning, the
feature of every vertex in the partitions V; is drawn
identically and independently from p;.

e Especially, these features are independent from
the edges in which they participate,

Pz’(x(i’l)) = Pi($(i’l)|E(G))~

e Moreover, all hyperedges (examples) get a target
value drawn identically and independently from
py|x- Even if the hyperedges share vertices, still
there target value is sampled i.i.d. from p,x based
on their (possibly identical) feature vector.

ie.,

e One can choose freely which vertices participate in
which hyperedges, and which edges belong to the
training set and the test set, as long as this hy-
peredge and training set selection process is com-
pletely independent from the drawing of features
for the vertices and the drawing of target values.

From the above assumptions, we can infer that
px(x) = [Ti_, pi(xD). Our analysis of the sample er-
ror holds no matter what the distributions p; and p,x
are, as long as the above assumptions hold.

It is possible that the empirical distribution of the
training and/or test set deviate from p, but we will
show that we can bound the extent to which this is
possible based on the assumptions.

In our movie rating example, it may or may not be
realistic that these assumptions hold. In particular, if
ratings are obtained from visitors of a cinema, then
probably some visitors will already have a preference
and will not choose movies randomly. On the other
hand, if ratings are obtained during an experiment or
movie contest where a number of participants or jury
members are asked to watch a specific list of movies,
one could randomize the movies to increase fairness,
and in this way our assumptions would be satisfied.

3 Preliminaries

In this section, we review some basic concepts of sta-
tistical learning theory when the training sample Z is
i.i.d.. These concepts will be used in following sections.

3.1 Learning task

The main goal of supervised learning is to learn a func-
tion f: X —) from training examples Z to predict a
label y of an unseen point x. For convenience, we as-
sume Y = R. We define a loss function L : Y xY — R
to measure the prediction errors. The function value
L(f(x),y) denotes the local error suffered from the use
of f to produce y from x. We average the local error
over all pairs (x,y) by integrating over Z with respect
to p. A natural idea is to find the minimizer of the
expected risk

1) = [LU0 pplxp)dix.s).
z
Then the target function we want to learn is defined as

pr = argmin EX(f),

where the minimization is taken over the set of all mea-
surable functions. Unfortunately, the probability dis-
tribution p is unknown, pr can not be computed di-
rectly. If every example in Z is independent from each
other, by the law of large numbers, as the sample size
m tends to infinity, the empirical risk

EL(N) = = S L), 1)

=1

converges to the expected risk £L(f). Then we may
get a good candidate ff to approximate the target
function pr, where

fZL = argminé’ZL(f).

3.2 Empirical risk minimization princi-
ple

In order to avoid over-fitting, we will not take the min-
imization of the empirical risk over all the measurable
functions. The main idea of the empirical risk mini-
mization principle is to find the minimizer in a properly
selected hypothesis space H, i.e.,

fZ3 = arg min £z (f).

The hypothesis space H is usually chosen as a subset of
C(X) which is the Banach space of continuous functions
on a compact metric space X with the norm || f]|ec =

SuPye | f(x)]-
The performance of the ERM approach is evaluated

in terms of the excess risk
V() — ERID).

If we define
L . oL
—
I argfmelnﬁ (f),

then the excess risk can be decomposed as

EX(fZ) =ER (1)) = [(FZ2) —EX (FIHE (F)—ER (£

We call the first part EL(f£)—E(fF) the sample error,
the second part EL(fL) — SL(pr) the approximation
error. The approximation error is independent of the
sample and it is well studied in |]. In this paper,
we concentrate on the sample error.

Another challenge about the ERM approach is how
to choose a proper hypothesis space. Intuitively, a
small hypothesis space brings a large approximation er-
ror, while large hypothesis space results in over-fitting.
Hence the hypothesis space must be chosen to be not
too large or too small. It is closely related to the bias-
variance problem (see, e.g., Section 1.5 of | D). In
learning theory, the complexity of the hypothesis space
is usually measured in terms of covering number, en-
tropy number, VC-dimension, etc. In this paper, we
will use the covering numbers defined below to mea-
sure the capacity of our hypothesis space H.

In this paper, we focus on the ERM approach as-
sociated with the least square loss function, that is
L(f(x),y) = (f(x) — y)?. Note that our analysis can
easily be extended to general loss functions case.

3.3 Estimating the sample error

For the sake of conciseness, we denote f%H, ffl,

E7(f) and EX(f) as fz, fu, Ez(f) and E(f) respec-
tively. Now we are in a position to estimate the sam-

ple error £4(fz). The definition of fz tells us that

Ez(fz) — Ez(fn) < 0, therefore the sample error can
be decomposed as

Enlfz) = E(fz) — E(fn) = [E(fz) — Ez(fz)]
+[€z(fz) — Ez(fu)] + [E2(frn) — E(fn)]
<[E(fz) — Ez(fz)] + [Ez(fu) — E(fn)]-

Before stating the results, we first introduce some
notations and definitions.

Definition 1. Let S be a metric space and 7 > 0. We
define the covering number N'(S,7) to be the minimal
¢ € N such that there exists £ disks in S with radius T
covering S. When S is compact, this number is finite.

Definition 2. Let M > 0 and p be a probability dis-
tribution on Z. We say that a set H of functions from
X to Y is M-bounded when

sup | f(x) —y| < M
Fer

holds almost everywhere on Z.

To bound the sample error, the Bernstein inequality
is used [?].

Theorem 1. Let Z be an i.i.d sample and & be a func-
tion defined on the space Z with mean E(§) = p, vari-
ance 0%(&) = o2 and satisfying |£(z) — u| < M for
almost all z € Z. Then for all € > 0,

Pr (;;é(m) — > e) < exp (—W) :

We estimate the sample error by the above concen-
tration inequality. In this paper, we omit the details of
the proof and directly quote the following result from

[CZ07).

Theorem 2. Let H be a compact and convex subset of
C(X). If H is M-bounded, then for all € > 0,

€ me

Pr (En(fz) > €) SN(H7W) exp (— W)

4 Related work

In this section, we discuss the related work.

4.1 Dependency graphs

As described in | |, a dependency graph can be
used to represent the relationship between the training
examples in Z. The vertices of the dependency graph
I' are the hyperedges in G, that is, V(I') = E(G).
Thus, the vertices in the dependency graph also repre-
sent training examples in Z. Two vertices are adjacent
if the corresponding two hyperedges overlap, i.e., if two
hyperedges e, and e, in E(G) satisfy that there exists
7 such that egj) = el()j), then the two vertices e, and e
are adjacent in I" and the induced examples z, and z;,
are not independent.

4.2 The chromatic-number bound

In |], the author shows an inequality which can
be used to bound the error on averaging a function over
networked sample.

Theorem 3. Let Z be a G-networked sample and & be
a function defined on the space Z with mean E(§) = u,
and satisfying |£(z) — p| < M for almost all z € Z.
Then for all € > 0,

2

1 8me
prﬂngk@»—u2€>§“®<‘%vuvw%+Mdm

where x*(I") is the fractional chromatic number of the
dependency graph.

Let us now consider a learning strategy we call EQW
(EQual Weight) and which learns from a set of net-
worked examples in the same way as if they were i.i.d.
(i.e. without weighting them as a function of the net-
work structure). We can use Theorem 3 above to
bound the sample error of EQW:

Theorem 4. Let H be a compact and conver subset
of C(X), and Z be a G-networked sample. If H is M-
bounded, then for all € > 0,

3me

Pr (Ex(f2) >) <N (H " 1300 (D)7

€
aar) e

The result above shows that the bound of the sample
error does not only rely on the sample size but also the
fractional chromatic number of the dependency graph.
That is, a larger sample may result in a poorer sample
error bound since x*(I") can also become larger.

4.3 Mixing conditions

There is also some literature on learning from a se-
quence of examples where examples closeby in the se-
quence are dependent. In the community of machine
learning, mixing conditions are usually used to quantify
the dependence of sample points and are usually used
in time series analysis. For example, in |], the
learning performance of a regularized classification al-
gorithm using a non-i.i.d. sample is investigated, where
the independence restriction is relaxed to so-called a-
mixing or S-mixing conditions. In |], regular-
ized least square regression with dependent samples
is considered under the assumption that the training
sample satisfies some mixing conditions. In | 1,
the authors established a Bernstein type inequality is
presented for stationary exponentially a-mixing pro-
cesses, which is based on the effective number (less
than the sample size). Our Bernstein type inequali-
ties for dependent network data too assigns weights to
examples. However, the assumptions for the the train-
ing sample are different, and the main techniques are
distinct. Moreover, in practice, it is not easy to check
whether the training sample satisfies the mixing con-
ditions. Our networked training examples certainly do
not satisfy any of these mixing conditions. We refer
interested readers to |] and references therein for
more details about the mixing conditions.

5 Selecting an independent sub-
set of training examples

A straightforward idea to learn from a G-networked
sample Z is to find a subset Z; C Z of training exam-
ples which correspond to non-overlapping hyperedges.
Due to our assumptions, such set will be an i.i.d. sam-
ple. We can then perform algorithms on Z; for learn-
ing. We call this method the IND method. To bound
the sample error of this method, we can directly use
the result in Section 3.

The key step of the IND method is to find a large
Z;. The larger |Zj| is, the higher will be the ex-
pected accuracy of fz,. If two hyperedges e, and ey
in G do not share any vertex, i.e., el(f) =+ el(f) for all
1 < i < k, the two induced examples z, and z; are
independent. Therefore, finding a subset Z; from the
training dataset Z, is equivalent to finding an inde-
pendent set in the dependency graph I', and is also
equivalent to finding a hypergraph matching in G.

For any dependency graph I, it holds that (see, e.g.,

[Diel0]),

A
2

X))~
where « is the independence number. If we can find a
maximum independent set of the dependency graph I,
then the bound of the IND method will be better than
that of the EQW method.

However, It is NP-hard to find a maximum inde-
pendent set in I' or equivalently to find a maximum
matching in G when k > 3 |]. Therefore, the IND
method is not effective in practice since it is difficult
to find a large independent set of networked examples.

6 A weighting method

In this section, we propose a computationally efficient
method based on a weighting strategy. It allows for
a better bound of the sample error than the IND and
EQW methods.

6.1 Feasible weighting

Given a hypergraph G, we weight every hyperedge e;
with a nonnegative value w;. We use the notation wg
to denote the sum) ;. w; over a set of indices F' C
{1,...,n} of hyperedges, and 1(v) to denote the set of
indices of hyperedges incident on a vertex v € V. We
say that w = [wq,...,w,] is a feasible weighting of a
hypergraph G if for all ¢ it holds that w; > 0 and for
all v € V' it holds that w,) < 1.

For a hypergraph G, its s-value is defined as follows:

s(G) =

max{ Z w; : w is a feasible weighting for G }
e, €EFE

Notice that these constraints form a linear program
on w. We call a w which makes the linear program
maximal an optimal weighting. There exist efficient
methods to solve the linear program formed by the
above-mentioned constraints and hence compute an
optimal weighting and the s-value, e.g., interior point
methods |]. An optimal weighting can be con-
sidered as a fractional maximum hypergraph matching
[,]. One can show that the value s(G) is
always greater than or equal to the size of a maximum
hypergraph matching in any hypergraph G.

For a G-networked sample Z, we denote the weighted
sample Zs = {(x;, yi, w;)} where [w1,...,w,] is an op-
timal weighting. Now we can define a new empirical

risk on the weighted sample Z¢ by
1 n
&(f) = S Z;wi(f(xi) — i)
i=

In the following, we will show the sample error bound
of an ERM approach with Zs.

6.2 Exponential inequalities

In Section 3, the Bernstein inequality is used to esti-
mate the sample error. A key property used for prov-
ing the Bernstein inequality is that all observations are
independent. That is, if &,...,&, are independent
random variables, then

Eexp (i §Z> = ﬁEefi.
i=1 i=1

However, when learning from networked training ex-
amples, the equality can not be used.

The following inequality is an analogue to the Bern-
stein inequality. The inequality will be used later to
estimate the sample error for a networked sample.

Theorem 5. Let Z be a G-networked sample and & be
a function defined on the space Z with mean E(§) = u,
variance 02(&) = o2, and satisfying |£(z) —p| < M for
almost all z € Z. If w is an optimal weighting of G,
then for all € > 0,

2

1 Se
Pr <S z;wiﬁ(zi) —p= 6) < exp <2(a2+;,Me)> '

6.3 An ERM approach with Zg

In this section, we consider the ERM approach asso-
ciated with Zs. As discussed in section 3.2, the ERM
approach aims to find a minimizer of the empirical risk
in a proper hypothesis space H to approximate the tar-
get function, i.e.,

= in &(f).
fz, arg min (f)

Recall the empirical risk with Zg takes the form &(f) =
L3 wi(f(x;) — yi)?, and the expected risk E(f) =
J(f(x)—y)?p(x,y)d(x,y). As mentioned in section 3.2,
the target function is the minimizer of the expected risk
E(f), one can easily see that the target function takes
the form |]

fp(x) :/ypy\x(x’ y)d(xay)'

Then the performance of the ERM approach is mea-
sured by the excess risk

E(fz.) = E(fp).

Recall the definition fy; = argminsey E(f), the excess
risk can be divided into two parts (sample error and
approximation error) as follows

E(fz.) = E(fp) = [E(fz.) — E(fu)] + [E(fn) — E(fo)]-

Notice that the approximation error (fy) — £(f,) is
independent of the sample Zs, and the approximation
error vanishes if f, € H.

In this section, we focus on the sample error
Enlfz.) = E(fz,) — E(fn)-

The following is our main result.

Theorem 6. Let H be a compact and convex subset of
C(X). If H is a M-bounded, then for all € > 0,

Pr(&u(fa) 2) < N(H’ ﬁ) P (- 308?\44)'
Remark: In this paper, we mainly consider the ERM
algorithm associated with networked samples to avoid
over-fitting. Another way to deal with over-fitting is
regularization, which is initially proposed to solve ill-
posed phenomena induced in inverse problems, e.g., ill-
conditioned matrix inversion problems. Similar results
can also be obtained for the regularization algorithms
by using the probability inequalities in section 6.2.

7 Conclusions

In this paper, we introduce the problem of learning
from networked data. We first show that this may
result in a poor sample error bound if we ignore the
dependency relationship between the examples. We
then analyze a method where first a set of i.i.d. ex-
amples is selected. Existing theoretical results can be
directly used for this method, but it is difficult to find a
large set of independent examples. We propose a novel
method which is a weighting strategy with efficiently
computable weights. To assess learning algorithms on
these weighted examples, we show a Bernstein-type
statistical inequality. Using this inequalitiy, we can
estimate the sample error. We show that this bound is
better than existing alternatives.

In future, we want to consider settings where we do
not make the strong independence assumption that the
occurrences of the hyperedges are independent of the
features of the vertices. A first step in this direction
would be to develop a measure to assess the strength

of the dependency of the hyperedges on the features of
the vertices and its influence on the learning task at
hand.

Acknowledgements

The first author and the second author are supported
by ERC Starting Grant 240186 “MiGraNT: Mining
Graphs and Networks: a Theory-based approach”.
The third author is supported by the EPSRC under
grant EP/J001384/1.

References

[Ben62] George Bennett. Probability inequalities for
the sum of independent random variables.
Journal of the American Statistical Associ-

ation, 57.297:33-45, 1962.

[Bra05] Richard C. Bradley. Basic properties of
strong mixing conditions, a survey and some
open questions. Probability Surveys, 2:107—

144, 2005. 5

[BV04] Stephen Boyd and Lieven Vandenberghe.
Convex optimization. Cambridge University

Press, 2004. 5

[CL12] YukHei Chan and LapChi Lau. On linear
and semidefinite programming relaxations
for hypergraph matching. Mathematical

Programming, 135(1-2):123-148, 2012. 5

[CZ07] Felipe Cucker and Ding-Xuan Zhou. Learn-
ing theory: an approximation theory view-
point. Cambridge University Press, 2007. 3,

4,6

[Diel0] Reinhard Diestel. Graph theory. Springer-

Verlag, 2010. 5

[GJ79] Michael R. Garey and David S. Johnson.
Computers and intractibility, a guide to the
theory of NP-Completeness. W. H. Freeman

Company, 1979. 5

[GS11] Zheng-Chu Guo and Lei Shi. Classification
with non-iid sampling. Mathematical and
Computer Modelling, 54.5:1347-1364, 2011.

5

Wassily Hoeffding. Probability inequali-
ties for sums of bounded random variables.
Journal of the American statistical associa-
tion, 58.301:13-30, 1963.

[Hoe63]

[Jan04]

[Lov75]

[MMO96]

[SW10]

[UrAGO6]

Svante Janson. Large deviations for sums
of partly dependent random variables. Ran-
dom Structures € Algorithms, 24.3:234-248,
2004. 1, 4

Laszl6é Lovasz. On the ratio of optimal in-
tegral and fractional covers. Discrete math-
ematics, 13.4:383-390, 1975. 5

Dharmendra S. Modha and Elias Masry.
Minimum complexity regression estimation
with weakly dependent observations. In-

formation Theory, IEEE Transactions on,
42.6:2133-2145, 1996. 5

Hongwei Sun and Qiang Wu. Regularized
least square regression with dependent sam-
ples. Advances in Computational Mathe-
matics, 32.2:175-189, 2010. 5

Nicolas Usunier, Massih reza Amini, and
Patrick Gallinari. Generalization error
bounds for classifiers trained with interde-
pendent data. In Advances in Neural Infor-
mation Processing Systems 18 (NIPS 2005),
pages 1369-1376. MIT Press, 2006.

	1 Introduction
	2 Problem Statement
	2.1 The network
	2.2 Features
	2.3 Examples
	2.4 Independence assumption

	3 Preliminaries
	3.1 Learning task
	3.2 Empirical risk minimization principle
	3.3 Estimating the sample error

	4 Related work
	4.1 Dependency graphs
	4.2 The chromatic-number bound
	4.3 Mixing conditions

	5 Selecting an independent subset of training examples
	6 A weighting method
	6.1 Feasible weighting
	6.2 Exponential inequalities
	6.3 An ERM approach with Zs

	7 Conclusions

