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Abstract

Learning from data streams is emerging as an important ap-
plication area. When the environment changes, as is in-
creasingly the case when considering unending streams and
long-life learning, it is necessary to rely on on-line learning
with the capability to adapt to changing conditions a.k.a.
concept drifts. Previous works have focused on means to
detect changes and to adapt to them. Ensemble methods re-
lying on committees of base learners have been among the
most successful approaches.

In this paper, we go one step further by introducing a
second-order learning mechanism that is able to detect rel-
evant states of the environment, to recognize recurring con-
texts and to anticipate likely concepts changes. Results of
an empirical comparison with adaptive methods show that,
for a very slight price in memory and computation load, the
proposed algorithm always improves on, or at worst equals,
the prediction performance of a mere adaptive approach.

1 Introduction

Recent years have witnessed the emergence of a whole new
set of applications involving data streams made of pairs
(x¢,9:), where the “answer” or true label y; is revealed
(sometimes long) after the input x;. For instance, a set of
customers can be submitted to adds or offers arriving on se-
quence, to which they answer with buying actions or not.
The task for a forecaster is to predict the answer to each
new incoming incentive x;, possibly in order to regulate the
stocks, even before the outcome y; is known. Because of
varying economic conditions, or because of changes in the
season or in the weather, the customers may modify their
buying behavior. Sometimes it can even occur abruptly
like when a big amendment in the economic policy is an-
nounced.

Learning from streams [Gam10] is usually treated using
online machine learning techniques which differ from clas-
sical batch learning methods in three major points. First,
streaming data are not stored or reprocessed, due to mem-
ory constraints. Secondly, the prediction model should give
answers in an any time fashion, while updating itself with
each received information from the stream. Finally, online
learning does not presuppose that the training data be inde-
pendent and identically distributed. It is ready to adapt to
changing conditions. This is why, even though most works
in recent years have dealt with the computational issues
raised by the demand for a small constant learning time and
near constant memory resources, a stream of research has
also focused on evolving concepts in case of non-stationary
environments, specially on how to detect concept changes
and how to best adapt to them.

In this context, passive adaptation to concept changes
may not be the best learning strategy. Indeed, a learner
may profit from the information possibly conveyed by the
very sequence of data. For instance, one can gain precious
time and avoid costly incorrect predictions by being able
to recognize a recurring situation or to anticipate the likely
evolution to come along. This kind of second order learn-
ing is the object of the approach presented in this paper.
The ADACC (Anticipative Dynamic Adaptation to Concept
Change) method, that we suggest, deals both with the chal-
lenge of optimizing the stability-plasticity dilemma (keep-
ing as much data as possible in order to get the best pos-
sible hypothesis while at the same time recognizing when
data points become obsolete and potentially misleading)
and with the anticipation and recognition of incoming con-
cepts. This is accomplished through an ensemble method
that controls a pool of incremental learners. The manage-
ment of the pool of learners enables to naturally adapt to
the dynamics of the concept changes with few parameters
to set, while a learning mechanism managing the changes
in the pool provides means for the anticipation of, and the



quick adaptation to, the underlying modification of the con-
text.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss existing works on online learning in the
context of concept changes. Section 3 presents our contri-
bution, which is followed by the report of empirical results
in Section 4. The last section presents conclusions and pos-
sible avenues for future work.

2 Relevant Works

Aside from the question of the severe constraints posed on
the computational load of online learning (see [DHOO] for
a pioneering study and [KirO7|] for more references), the
main issue in online learning is connected with the prob-
lem of learning in the presence of a changing environment.
These changes can come in two guises according to which
of the input distribution p(x) or the conditional distribution
p(y|x), is affected. If only p(x) changes, it is said that
a virtual drift or covariate shift occurs. If the changes in
the environment concern the concept itself p(y|x), a con-
cept drift occurs, which can be gradual or abrupt. In an
abrupt drift, the target concept gives suddenly way to a new
one (see Figure E]) In a gradual drift, however, the new
target concept takes over the old one over a period 7qy; f¢.
The most general type of changing environments involves
changes both in p(x) and in p(y|x). When the environ-
ment varies, it is important to be able to detect the changes
and to modify the prediction model accordingly in order to
maintain as best as possible the prediction performance.

Usually, the detection of change is done by monitoring
either variations in the distribution of the incoming data, or
variations in the prediction’s performance of the system. In
both cases, it is necessary to set an alarm threshold and to
decide upon an adequate duration of observation in order to
trigger justified alarms only. This requires some knowledge
of the dynamic of the environment.

Likewise, adaptation to changes meets a dilemma re-
garding the adequate length of the subsequence of the data
stream that must be trusted for providing relevant informa-
tion about the current target concept. The earliest tech-
niques used sliding windows over the data stream [WK96].
The length of the window can be set beforehand, but more
sophisticated approaches rely on some dynamic control of
this length depending on the stability of the prediction per-
formance. A second strategy uses a weighting scheme over
past instances which is deemed to reflect the relevance of
the data to the current context. Both these techniques,
windowing and weighting, imply some a priori choices
about threshold, decay factors and so on [KIiO4]. A third
strategy tries to avoid these choices by relying instead on

an ensemble-based learning technique, akin to bagging or
boosting. The idea is to let a committee of base learners in-
crementally learn over the stream of data, and to replace the
worst ones at certain times [StaO3b]. Thus, the hope is that
the committee automatically eliminates the no longer rel-
evant base learners while keeping and improving the most
promising ones. In addition, for each incoming instance,
the prediction to be made can result from a combined vote
from the base learners, hopefully leading to more accurate
answers, as in classical ensemble learning methods.

The committee based strategy still entails some choices
regarding the base learners, the size of the ensemble or com-
mittee, the deletion mechanism, the introduction and initial-
ization of new learners in the ensemble, and the decision
voting process. Recent years have seen several proposals
among these lines showing promising results on a variety
of online learning tasks [BGdCAFJr 06,TPCPOS, BHP09].
A limit of these algorithms, however, is that they passively
wait for the changes to occur and then try to follow them
as best as possible rather than proactively predict what is
likely to happen.

Very few works have confronted the anticipation of con-
cept changes. Among them, the PreDet [BSKOS]| algorithm
uses decision trees as classifiers and anticipates future trees
by predicting for each decision node the evaluation measure
of each attribute, this value being used to determine which
attribute will split the node. In the case of a leaf node, it
predicts its class label distribution. Future changes are pre-
dicted using a linear regression model trained on a fixed size
history. Another prediction system, RePro [YWZ06], stores
the observed concepts in a Markov chain. RePro assumes
that the same concepts repeat over time. When a change is
detected, the Markov chain is used to predict the most likely
concept to come.

The method we present below aims at benefiting from the
knowledge of the past to predict future concept changes.
Contrary to other systems, it can be used with any base
learner that produced parameterized hypotheses (e.g. neural
networks) and is not limited to decision trees. Furthermore,
it does not necessitate that evolution changes repeat over
time to make anticipation, unlike Markov chains.

3 Concept Changes:
Anticipative

Adaptive and

In online learning, the learning protocol is as follows. At
each time step ¢, an input x;, is received, the learning algo-
rithm is asked to make a prediction g, over its label, and
then only is revealed the true label y,. The algorithm can
then adapt its current view of the world, noted here H;, and
be ready for the next input x;; to come.
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Figure 1: Four different types of concept changes.

The overall goal is to minimize the loss over time :
A S U(Hy(x4,y0)) with T — oco. Usually, the loss
function is simply the O — 1 loss function which counts the
number of mistakes.

In the most general case, the target concept, which de-
cides the label for the next input x;, can change arbitrarily
over time, and even be manipulated by an adversary. Then,
the only known theory is the online learning theory which
characterizes the regret that can be achieved by a learning
algorithm with respect to the best available “expert” in a
given pool of experts [[CBLO6]. If, however, more benign
assumptions can be made about the dynamics of the envi-
ronment, such as it evolves gradually or incrementally or it
evolves with sudden changes but interspersed with station-
ary states (see Figure[I), then it becomes legitimate to try to
assess the future performance of a classifier on the base of
(a partial view of) its past history.

In this paper, we work on anticipating future concepts
that evolve in a predictable way, and on the recognition of
recurring concepts, whether the change between consecu-
tive concepts happens gradually or suddenly.

In the following, we first introduce the adaptive architec-
ture of the learning system we take as our basis. Then, we
present the anticipating mechanism that builds upon it.

3.1 Adapting to Concept Changes

Being able to recognize changes in the environment and to
anticipate them requires some kind of second-order or meta
learning. The learning system needs to be able to analyze
and reflect upon its past experiences and to decide what is

the best course of action or decision given the past. For this
meta-learning to take place, the adaptive strategies based
on ensemble of base classifiers are well suited because they
naturally manage a set of potential models of the changing
environmemﬂ . At any time, the current ensemble of base
classifiers represents a kind of memory of the past, and of-
fers the opportunity for second order learning. Furthermore,
these ensemble methods generally adapt gracefully to a va-
riety of changing conditions in the environment and do not
require fine tuning of their few parameters.

The main idea is to maintain a pool of base learners
{hi}1<i<n, each of them adapting to the new input data,
and to administer this pool or ensemble thanks to a deleting
strategy and an insertion one. The main principles of these
ensemble methods are the following:

e Each base learner in the pool continuously adapts with
new incoming data until it is removed from the pool.

e Every T time steps, the base learners are evaluated on
a window of size Tepqi-

e Based on the results of this evaluation, the deletion
procedure chooses a base learner to be removed.

e A new based learner is created and inserted in the pool.
It is protected from possible deletion for a duration

Tmat-

e For each new incoming instance x;, the prediction
H (x,) results from a combination of the prediction of
the individual based learners h;(x;).

Individual variations around this general framework lead
to specific algorithms [Sta03a, [KMO7]. For instance, in
our studies, and after extensive testings, we converged on
the following settings. The evaluation procedure simply
counts the number of erroneous predictions on the last Teq;
time steps. The deletion strategy randomly select one base
learner from the worst half of the pool evaluated as above.
The global prediction merely uses the prediction from the
current best base learner (randomly chosen in case of ties).
The deletion and prediction strategies could easily be mod-
ified. They were decided upon because their performances
topped the ones of other strategies like deleting all base
learners with a poor performance or predicting using votes
of the base learners.

This simple method offers a good trade-off on the
plasticity-stability dilemma and leads to fast adaptation
when the underlying concept changes. It is not the center
of this paper.

! In this paper we employ indifferently the terms “base classifiers”,
“base learners”, “experts” and “hypotheses”.
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Figure 2: Lefft, a concept represented by a circle. The exam-
ples are classified into one of two classes: inside, outside
the circle. Right, the circle moving with time, creating con-
cept drifts.

3.2 Anticipating Concept Changes

In an evolving environment, two aspects should be consid-
ered when anticipating future concept changes: recurrence
and predictability. Recurrence means that the same con-
cepts (or close approximations) might reappear with time,
either in a cyclic manner (e.g. seasonal variations) or in an
irregular manner (e.g. inflation rate, market mood). Pre-
dictability means that the concept evolves in a predictable
manner, but without necessarily repeating over time. Here,
“predictable” refers to an underlying prediction system, that
is a learning system that, taking as input information about
the past history of the concept evolution, is able to predict
its (near) future. This, of course, implies that the past his-
tory has to be captured and represented. We explain below
how we do it with a system that determines relevant snap-
shots of the evolution.

As an illustration, consider a concept corresponding to a
circle in a 2-dimensional input space. The instances are la-
beled into two classes depending on whether they lie inside
or outside the circle (see Figure[2). Suppose now that the ra-
dius is fixed while the circle’s center moves with a constant
speed, creating a concept drift. It might be the case that
a learning system be able to learn from such a sequence of
concept changes and predicts the likely future concepts. For
instance, we did it with Ellman’s neural networks [Wil93].
Note however that in such a case, the same circle doesn’t
repeat over time and there is no recurrence of past concept
thus precluding the use of Markov chains or of any method
using frequency measures.

In addition to being illustrative of a simple scenario, this
example shows also why an approach commonly thought
about in sequence learning, that of Markov chains, is here
helpless. Learning a Markov chain requires indeed that the
concepts be encountered repeatedly in order to reliably es-
timate transition matrices. When concepts do not recur, this
is impossible.

In the following, we first describe a mechanism for the
recognition of the models of the world before presenting the

second-order learning mechanism that works on the models
of the world identified as significant in order to predict fu-
ture models. Algorithm [T| offers a formal view of the steps
and methods described below.

Recognition of significant models of the world

In this step, we aim at recognizing the different concepts
encountered during the data streaming. Our goal is to take
a snapshot (copy) of the underlying stable concept via the
learned models or hypotheses in the adaptive ensemble. A
main challenge here is to decide when to take a snapshot, or
equivalently to decide when the ensemble reflects the un-
derlying concept. We should ensure that enough training
examples have been learnt from the current concept before
the snapshot is taken.

One approach has been proposed in the ADWIN system
[BGO7]. It supposes a priori that m training instances are
necessary for the system to stabilize after an abrupt concept
change. Consequently, a snapshot is taken m time steps
after a change is detected. We did not retain this method
because of its many limitations. It has difficulties to detect
gradual concept changes and the snapshots then taken have
often low relevance. Furthermore, the choice of the value
for the parameter m is difficult if one does not know in ad-
vance the properties of the incoming concept changes.

In this work, we aimed to find an implicit way to detect
periods of stability, and this via the evolving hypothesis in
the adaptive ensemble. When the environment has been in
a stable state for a sufficient time, the best hypotheses in
the pool of base learners should converge toward the same,
and near optimal, predictive performance. Therefore, their
diversity, measured as below, should be low, while their er-
ror rate should decrease toward the best achievable perfor-
mance or close to it. This suggests to take into account
both diversity of the best hypotheses in the pool and their
error rate as an index of the stability of the environment.
In our study, we use the kappa statistics K [Car90] in or-
der to compute diversity. This statistics measure evaluates
the degree of agreement between the classification of a set
of items by two classiﬁersﬂ In case of complete agree-
ment, = 1. If there is no agreement other than what
would be expected by chance, K = 0. The stability index
at time ¢ is computed over the last 75 received examples:
Lstabitity = agreement — per formance where agree-
ment and performance are computed over the best half of
the current hypotheses in the pool, and are defined as:

N/2 ~N/2
Zi:l 1;1 ,Chi Jhi
i#j

Tx(3 -1

ey

agreement =

2 Other agreement statistics should do as well.



and:

S S err (hi(xe—y)s yi-s)

N
Ts * o

per formance =

2
where NV is the size of the pool.

Each point in the stability index curve, over some prede-
fined threshold 67, is suggestive of a stable environment and
is therefore a privileged moment to take a snapshot of the
current best hypothesis, the one that seems to best represent
the state of the world.

One must however be careful not to store consecutive hy-
potheses that correspond to the same underlying state of
the environment. Here again, the agreement statistics, in
our case the kappa statistics, can be used to measure the
agreement between a candidate snapshot A} and the pre-
ceding one hj, . For this purpose, a set of n unlabeled data

U = {x;},_, is generated at random using a Gaussian dis-
tribution around the last 7, examples, and the predictions of
h; are then compared with the predictions of the last stored
snapshot i, . If the estimated agreement is less than some
predefined threshold 64, the current candidate snapshot h;
is considered different enough from h}, and is therefore
added to the list My of snapshots representing past sta-
tionary states of the environment.

The long term memory and second order learning

The list of past snapshots My = {C1,Cs,...,Ck},
ordered according to the snapshots’ time appearance, is the
basis of the second order learning mechanism. It serves two
purposes. First, it provides a sequence of successive models
of the environment that can be used by a learning algorithm
in order to predict the most likely future state in the series.
Second, it stores a memory of past successful models of
the world, models that should be repeatedly tested against
current data in case a recurring concept can be recognized.

As previously mentionned, the anticipation mechanism
deals with both: predictability and recurrence. In our
experiments, we used Elman’s recurrent neural networks
as the predictability mechanism because of their gen-
erality and their good performance reported for learn-
ing tasks similar to our’s [Wil93]. A network is
trained on the pairs of consecutive concepts in Mpp:
{(C1,C%),(Cs,C5),...,(Ck-1,Ck)} in order to predict
the next likely snapshot ék+1~ To simplify the discussion,
a snapshot C is represented as a vector of parameters of
dimension n.

3)

For instance, if the concept is learnt by a neural network,
the snapshot can be represented as a vector of the network
weight values. We call the pair consisting of two consec-
utive snapshots §; = (C;, Ciy1) a change sample. After

C = [Cl7 C25-ens C’rb]

Algorithm 1: Selection of snapshots by ADACC.

begin
Eoy + 0 /* Ensemble of experts */
Mrr + 0, /+ List of snapshots =/
k<« 1;
fort =1 to co do
[k ——mmm */
/+ Adaptation */
Jx —mmm */
(x¢,ye) is the current training instance;
[Ey, §i] < AdaptationEnsemble(Ey—1,X¢, yt);
[x —mmm */
/* Anticipation %/
Jx */
H= {hi}i\i/f is the best half of experts in E};
i N/2 N/2
agr = YN[ ﬁ ZZKW E
5 * (3 i=1 j=1
iF# ]
Ts—1N/2
perf = *N ZZETT ht Xi—j), Yt ])
Ts 2 j=0 i=1
Istability = agr — perf;
/* Detect Stable Concept */
if Istapitity > 01 then
hi = snapshot(E:);
/* Detect New Concept */
if isEmpty(M_pr) then
Cr = hi;
Mrr = add(Mrr,Ch);
else if K, , hy < 04 then
k=k+ 1,
Cr = hi;
MLT = 7“610[&06(./\/‘LT7 ék, Ck),
Chri1 = predictNextponcept(MLT);
| Merr =add(M¢rr, Cryr);
end

recognizing k stable concepts, the k& — 1 change samples
(51, ceey 5k_1) form the set of training examples learnt by
the Elman network in order to predict the next snapshot
ék+1. The predicted snapshot is temporally added to the
list of snapshots M . It is replaced by the next snapshot
Cr+1 when this one is acquired.

Therefore, the list Mz contains snapshots representing
past stationary states of the environment, which can be use-
ful in case of recurring contexts, in addition to the next pre-
dicted concept according to the Elman’s Network, which
can be useful in case of a predictable sequence of concept
changes. Each snapshot in the list is then evaluated accord-
ing to the evaluation strategy used by the adaptive ensemble
to evaluate its base learners in the pool. A snapshot is used
for prediction if its evaluation record is the best among all



candidate hypotheses from both the pool of base learners
and Mpr.

While the pool of candidate base learners is managed ac-
cording to the policy outlined in Section[3.T]and is therefore
of a finite constant size, the list M7 of snapshots may
a priori increase forever if new hypotheses are continually
retained as worthy of storage. Fortunately, it is possible
to keep this size under control by recognizing that the two
roles of M p: anticipation and memory for recurring con-
cepts, ask for two different memory management systems.
Indeed, since Elman’s networks are incremental learners,
they do not need to keep the past history of snapshots at
all. Regarding the memory for recurring concepts, it can
be kept constant using various heuristics. One is to delete
the oldest or the least reccuring snapshots from the memory.
Another one, more sophisticated, would be to store proto-
type snapshots instead of the original ones, using a hierar-
chical clustering technique. Because of the limited length of
the sequences in our experiments, we did not rely on such
memory management schemes.

4 Empirical Results

The aim of the experiments was threefold. First, to test the
performance of the snapshot mechanism and specially its
ability to detect both abrupt and gradual concept changes
and store the relevant target concepts with no, or limited, re-
dundancy. Second, to examine the gain, if any, brought by
the anticipation scheme compared to the mere adaptation
mechanism. Obviously, this depends on the ability to an-
ticipate the next state of the environment, and therefore on
the underlying structure (if any) of the sequence of changes
[BBDKOQ]. Thirdly, to test the mechanism for the recogni-
tion of recurring concepts and the gain it can bring.

In the worst case, where it is not possible to anticipate
the next concept and when no recurring concept arises, the
prediction performance of the system should fall back to the
performance of its adaptation mechanism. Indeed in these
cases, no snapshot in M does outperform the best base
learners and the resulting behavior is the one of the adaptive
system alone.

4.1 Experiments and Datasets

We conducted experiments on artificial and real data sets.
The artificial sets were used to simulate recurrent and pre-
dictable concept changes while controlling the timing of
the change, its speed (abrupt, or more or less gradual) and
its severity (amount of change) [MWY10]. The real data
set comes from video sequences taken with a mobile robot

weight value

concept index

Figure 3: A typical evolution in the weight values of the
hyperplane used in the artificial datasets. Here the target
concept involves 4 different weights that vary from a con-
cept to the next one.

wandering in and out of rooms in a laboratory, creating re-
curring contexts.

In the artificial data sets, the input space X is d-
dimensional and the target concept is a linear decision
boundary (a hyperplane) described by the relation y(x) =
sign(Z?zl w;x; + wo). The experiments were carried out
on streams with 7,150 time steps and hence data points.

In each stream, 12 concept changes were simulated by
changing the weights {w; fzo of the target hyperplane. The
first 7 concepts evolved through the successive addition or
substraction of constant values (differing according to the
experiments) to the weights. The idea was to look at the
capacity of the anticipative mechanism to identify this reg-
ularity and therefore to predict likely future concepts. The
last 6 concepts were recurring concepts, that is concepts al-
ready encountered in the past data stream (see Figure [3)).

Three artificial data streams were generated, each in-
volved a different level of severity in its concept changes:
low or medium or high respectively involving changes in 1,
5 and 9 parameters out of the 11 that define the target con-
cept, with respectively approximately 3%, 60% and 84%
of the input space changing class between successive con-
cepts. In each stream, the changes happened either suddenly
or gradually, in a linear manner, between successive target
concepts.

The transition between consecutive concepts took from 0O
to 200 time steps and changes would start happening every
400 to 700 time steps. We did not observe any effect of
the dimension up to more than one hundred and therefore
only report results for the 10-dimensional case. The base
learners in the adaptation ensemble were perceptrons with
10 input units and one output unit, involving 11 weights (10
+ 1 for the bias). The Elman’s networks took as input the
11 weights of a snapshot and gave as output the 11 weights



of the next predicted snapshot.

The real data set was issued from the COLD database of
the Saarbriicken laboratory [PCQ9], a benchmark for vision-
based localization systems. It contains sequences of images
recorded by a mobile robot under different variations of illu-
mination and weather: sunny, cloudy and night. We worked
on the dataset captured in sunny conditions. The images
were labeled into one of four classes: corridor, one-person
office, printer area and classroom, and the total length of
the data sequence was 753. The robot visited the rooms
in the following order: corridor, bathroom, corridor, one-
person office, corridor, printer and corridor. It stayed in
the same room between 45 and 284 time steps. Images were
first pre-processed into a 128-dimensional space using the
Self-Organizing Map described in [GDTE11]. In the exper-
iments, we used decision trees (as implemented in Matlab)
as base learners in the adaptation ensemble.

One important goal of the experiments was to compare
the performances achieved with the combined anticipative
and adaptive mechanism, with the ones of a purely adaptive
mechanism.

The anticipative meta-learning system itself involves
three parameters that all pertain to the detection of relevant
snapshots. They are the stability threshold 0;, the decision
threshold 0, and the duration for the evaluation of candi-
date snapshots 7,. They were set respectively to §; = 0.9
and 6; = 0.8 while 7, = 100 was chosen for artificial data
streams and 75, = 25 for robotics in order to cope with a
faster dynamics. In the base version with no sophisticated
management of the snapshot list M, there are no addi-
tional parameters.

The remaining parameters concern the adaptive mecha-
nism, and we tried to optimize these in order to not unfairly
attribute gains to the anticipative process. The parameters
for the ensemble method for adaptive online learning in-
clude the size of the pool N, the maturity age 7,,,; and
the evaluation size 7.,4;. After extensive experiments, they
were set as follows.

The pool comprised N = 20 base learners for the arti-
ficial data sets (N = 15 for the robotics data). In order to
be compared, base learners were evaluated on the most re-
cent Teq,q; = 20 data points (time steps) (Teynq; = 15 for the
robot). The duration for maturity 7,,,: Was equally set to
20 time steps (7,,q¢+ = 10 for the robot).

4.2 Evaluation Measures and Methodology

In the experiments, we evaluated the snapshots stored by the
system with respect to the known target concepts. Ideally,
there would be one snapshot exactly for each encountered
state during the data stream. For instance, in the top of Fig-
ure[d] candidate snapshots are indicated with small squares

and the retained ones appear as red (or black) squares.

We also evaluated the gain in prediction errors resulting
from the use of the anticipation mechanism over the use of
the adaptation scheme alone. Likewise, we measured the
gain (if any) due to the recognition of a recurring concept.
The gain is simply the number of errors of prediction that
were avoided with respect to the use of the adaptive strategy
only (see Table 1 below).

Finally, the graphs (see Figure[d] the bottom three graphs)
report at each time step the current online predictive perfor-
mance, i.e. the mean number of instances correctly classi-
fied so far. In order to better visualize the gain after each
concept change, the performances of the adaptation mecha-
nism and of the adaptation + anticipation mechanisms were
reset to 0.5 (the chance prediction rate). One can then
observe, for instance, that the gains due to the anticipa-
tion mechanism start only to show after the fourth concept
change, which is unsurprising.

4.3 Results

Table 1 sums up the experimental results, averaged over 10
experiments. The table shows the mean predictive error of
the adaptive learning strategy, and the gain of using the an-
ticipation mechanism, in both predictability and recurrence.
The gain is measured as the difference between the number
of prediction errors made by the adaptive ensemble and the
number of prediction errors made by the anticipation mech-
anism. In the artificial data streams, we highlight the gain
brought by the predictability of the first 7 concept changes,
and the gain brought by the last 6 recurring concepts.

Figure [4| illustrates the mechanism for the selection of
snapshots on one data stream and it shows the evolutions of
the prediction performance over 10 repeated experiments
according to the severity of the concept changes.

Detection of concept changes and selection of snapshots

As can be seen in Figure[d] the value of the stability index
closely mirrors the concept changes. As soon as the appear-
ance of a new concept is detected by the system and the
corresponding candidate snapshot sufficiently differs from
the previously stored ones, it is stored away in M . That
policy enables the fast detection of novel target concept.
In our experiments, 100 % of all new concepts (260 alto-
gether) that were introduced in the data streams with high
and medium severity levels triggered the storage of a new
snapshot. There was no redundancy (no more than one
snapshot per concept) in the artificial data streams. How-
ever, in the data stream with low severity level, since the
consecutive concepts are quite similar, fewer snapshots than
concepts were retained. Some snapshot’s redundancy ap-



Stream Adaptation Anticipation Total gain Due to prediction | Due to recurrence
name size | base learner [ mean err. [ std-dev predictor mean [ std-dev | mean std-dev mean std-dev
10-D Low | 7,150 | perceptron 107.2 7.7 Elman net 1.9 1.7 0.0 0.0 1.9 1.7
10-D Med. | 7,150 | perceptron 784.4 322 Elman net 317.7 25.4 70.8 9.7 246.9 21.2
10-D High | 7,150 | perceptron 937.4 544 Elman net 393.9 46.5 120 18.1 273.9 343
Robot 753 decis. tree 43.0 2.6 - 9.0 1.9 - - 9.0 1.9

Table 1: Summary of the experiments and the measured gains in prediction errors wrt. an adaptive only strategy.
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Figure 4: Curves for 10-dimensional artificial data streams. The top plot shows the evolution of the stability index in
case of the medium severity concept changes. We show the time steps where candidate snapshots are considered (small
squares), and when they are retained (red (or black) squares). A candidate snapshot must have a stability index larger
than 6;, and in order to be retained, it must differ from the last retained snapshot, according to a decision threshold 6.
The three other plots show the online predictive performance using the adaptive learning strategy (continuous, blue, line)
and with the second order learning taking place. They are averaged over 10 repeated experiments. The beginning/end of
concept changes are indicated as vertical dotted lines. In case of gradual concept changes, the transition period between
consecutive concepts is colored in gray. The online predictive performance is reset once a transition is complete. Among
the three bottom plots, the fop one corresponds to high severity concept change, the middle one to medium severity, and
the bottom one to low severity.



peared for the robotic data because of the variation within
each concept (e.g. In an office the robot’s camera points to
different parts of the room which may induce several snap-
shots).

Second order learning

For concept changes of low severity (Figure [ bottom),
the adaptive strategy is able to follow the variation of the
environment as soon as enough candidate hypotheses are
good enough, which happens at the end of the first concept
(circa 400 time steps). Therefore, the anticipation strategy
does not bring an advantage there. The situation is signif-
icantly altered, however, when the concept changes are of
medium or high severity.

In our experiments, even though the concept changes oc-
cur at varying dates and with varying speed, the anticipa-
tion mechanism is able to predict relevant foreseeable tar-
get concepts that, in turn, are quickly recognized as the best
for labeling the incoming examples. This brings signifi-
cant gains in the online performance starting already after
the 3rd (resp. 4th) change of concept for the high (resp.
medium) severity context, and the gain increases thereafter
with each new concept change.

Table 1 shows that the gain in the number or labeling er-
rors attains more than 318/784 ~ 40% for concept changes
of medium severity, and approximately 42% in the case of
high severity. These gains are impressive in face of a diffi-
cult learning task. It is unlikely that they could be obtained
without a second order learning mechanism working over
the adaptive one.

Table 1 distinguishes furthermore between the gain due
to the predictability and the gain due to the fast recogni-
tion of a recurring concept. Predictability brings significant
gain in the medium and high severity settings for the arti-
ficial data sets. In the case of the robotics data, the gain
is totally due to the fast recognition of recurring concepts
which outperforms the anticipation mechanism.

As expected, there is never a negative gain. As noted ear-
lier, because the ensemble methods is based on a continual
competition between base learners from the adaptive mech-
anism and base learners from the anticipative one, second
order learning can never be detrimental to the overall pre-
diction performance as compared to the adaptive only pol-

icy.

5 Conclusions and Future Work

The ability to make predictions when data arrives contin-
uously in stream, possibly from a non stationary environ-
ment, is becoming increasingly important. Significant re-
search works in recent years have brought new techniques
to cope with these learning conditions. In this paper, we

presented a general framework to endow adaptive online
learning systems based on an ensemble approach with sec-
ond order learning capacity.

Our method provides means (i) to identify significant sta-
tionary states of the world, (ii) to make anticipation about
likely future states, and (iii) to recognize recurring con-
cepts if they ever arise. Few parameters are involved in the
second-order learning scheme and they do not need to be
finely tuned.

The empirical evaluation explored various conditions for
evolving data streams. It showed that as soon as the concept
changes are significant (medium or high severity), second
order learning yields substantial gains in prediction perfor-
mance over a mere adaptation policy. Furthermore, sec-
ond order learning can only improve and never deteriorate
the prediction performance, at a small cost in memory and
computation.

In the future, we plan to carry out experiments with very
long streams of data (~ 105 time steps) in order to test pos-
sible strategies for the management of the memory of snap-
shots. We will also extend the anticipation mechanism to
non parametric representations of targets.
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