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3Faculté des sciences de Tunis, Départment des Sciences de l’Informatique, 1060 Tunis, Tunisie
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Abstract

The huge number of association rules represents the
main hamper that a decision maker faces. In order to
bypass this hamper, an efficient selection of rules has
to be performed. Since selection is necessarily based on
evaluation, many interestingness measures have been
proposed. However, the abundance of these measures
gave rise to a new problem, namely the heterogeneity of
the evaluation results and this created confusion to the
decision. In this respect, we propose a novel approach
to discover interesting association rules without favor-
ing or excluding any measure by adopting the notion
of dominance between association rules. Our approach
bypasses the problem of measure heterogeneity and un-
veils a compromise between their evaluations. Interest-
ingly enough, the proposed approach also avoids an-
other non-trivial problem which is the threshold value
specification.

Keywords: Association rules selection, Interesting-
ness measures, Dominance relationship.

1 Introduction

Mining association rules is one of the core tasks in data
mining research. Since its first formalization in [AIS93],
the research on association rules has become very pop-
ular among the data mining researchers. Indeed mining

∗This paper is published in the proceeding of the IEEE 24th
International Conference on Tools with Artificial Intelligence.

association rules provides an opportunity to extract
relevant and valuable relationship between attributes
in transaction databases. Currently, association rules
are widely used in the decision making related to vari-
ous areas such as telecommunication networks, market
and risk management, inventory control etc [Man97].
However, it is well known that data mining algorithms
produce an overwhelming number of rules. Hence, the
decision maker is unable to determine the most inter-
esting ones and consequently unable to make decisions.
In order to face this obstacle, an efficient evaluation of
rules has become a compelling need rather than be-
ing a rational choice. Several works have been devoted
to the study of the interestingness of association rules
[HH03], [VLL04]. As a consequence, a panoply of statis-
tical measures, obeying different semantics, have been
proposed. Although these measures allow evaluating
rules from various sights, yet their abundance (≈ 60)
has yielded another problem for the decision maker. In-
deed, the outputs of evaluations vary from a measure to
another one and may even be contradictory since the
measures evaluate differently the rules. That is why,
it is common that a given rule be considered relevant
according to a measure and irrelevant with respect to
another one.

The problem caused by the abundance of measures
has led to a trend of works that focuss on propos-
ing approaches to assist the user in selecting the mea-
sures qualified to be the most adequate to the deci-
sion scope. These approaches can be classified into two
main categories namely the expert-based approaches

1



and the property-based ones. In the first category, dif-
ferent studies have compared the ranking of rules by
human experts to that yield by various measures. Then,
they suggested choosing the measure that yields the
closest one to the expert ranking [OSKY04], [TKS02].
These studies were based on specific datasets and ex-
perts. Thus, their results cannot be taken as general
conclusions. Moreover, in a real problem, it is not al-
ways possible to easily get expert’s ranking. As for the
second category, to reduce the number of measures,
many properties have been reported in [GH07]. Geng
and Hamilton surveyed the interestingness of measures
and summarized nine properties to address that is-
sue. Using properties facilitates a general and practi-
cal way to automatically identify interesting measures.
This trend has been enriched by different other works
[BGGB05], [HZ10], [LMVL08], [BGG+] with an addi-
tional number of properties. Nevertheless, these prop-
erties are not standards. Hence, they do not guarantee
selecting only one best measure. Indeed, a wide range
of UCI 1 datasets were also used to study the impact
of different properties. The results show no single mea-
sure can be elected as an obvious winner [HZ10]. Then,
in the case of selecting many measures, the problem re-
lated to the variety of outputs, mentioned above, per-
sists. In other words, the user cannot proceed towards
a unique selection of rules. Whatever one measure is
selected or more, nothing guarantees that they are the
”best” ones and some better suited measures may be
excluded for the simple reason that the used proper-
ties do not take into account the specificity of decision
context.

Our contribution lies within this scope. In this pa-
per, we introduce a novel approach that aims at dis-
covering interesting association rules without favoring
or excluding any mesure among the used measures. For
this purpose, we integrate into the rule selection pro-
cess, the skyline operator [BKS01] whose fundamental
principle relies on the notion of dominance. The sky-
line operator is used to resolve mathematical and eco-
nomics problems such as maximum vectors [KLP75],
Pareto set [Mat91] and multi-objective optimization
[Ste86]. On the other hand, the skyline operator has
received considerable attention in database community
and several algorithms, based on block nested loops
[BKS01], divide-and-conquer search [KRR02] and in-
dex scanning [TEO01], have been developed to meet
skyline requests that have different contraints in var-
ious computational domains. In our work, the skyline
operator comprises the rules that are supposed to be

1. http://archive.ics.uci.edu/ml/

the most interesting ones while taking into account sev-
eral measures. The dominance relationship, which is
the corner stone of the skyline operator, is applied on
rules and can be presented as follows: a rule r is said
dominated by another one r′, if for all used measures, r
is less relevant than r′. The former rule (i.e., r) is dis-
carded from the result, not because it is not relevant
for one of the mesure but because it is not interest-
ing according to the combination of all measures. Our
approach bypasses the problem of measure selection
by finding a compromise between the different outputs
and also bypasses another nontrivial problem which is
the threshold value specification. We note that the no-
tion of skyline operator is used in [SRPC11] for mining
undominated patterns with respect to a set of measures
M . It introduces the notion of Skylineability between
measures based on the fact when a pattern p grows (i.e,
by adding an item to p), the value of some measures in-
crease or decrease while it remains constant for others.
Using this notion of Skylineability, the authors shows
how to identify a smaller subset from M which allows
for the computation of all undominated patterns with
respect to M . This approach can be only applied to
a particular kinds of patterns like itemsets, sequential
patterns or subgraphs. However, association rules are
a combined form (premise and conclusion) of patterns
(itemsets) where the evaluation measures are based on
the link between premise and conclusion.

The remainder of this paper is organized as follows.
Section 2 gives a brief definitions related to associa-
tion rules and introduces the dominance relationship.
We propose and detail our approach of rule selection in
section 3. An extension of our approach to enable rule
ranking is presented in section 4. Results of the ex-
periments carried out on several datasets are reported
in section 5. Concluding points and avenues of future
work are sketched in section 6.

2 ASSOCIATION RULES AND

DOMINANCE RELATION-

SHIP

In this section, we first recall basic definitions related
to association rules. Then, we present these rules as
numeric vectors within the same dimension after hav-
ing been evaluated by a set of measures. This vector
format, allows us to benefit from the concept of domi-
nance and adapt it to our scope as described in section
2.2.
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a b c d

t1 × ×
t2 ×
t3 × ×
t4 ×
t5 × ×
t6 × ×
t7 ×
t8 ×
t9 × ×
t10 × ×

(a) A transaction dataset D

Rule Freq Conf Pearl

r1: a→d 0.20 0.67 0.02
r2: b→c 0.10 0.50 0.00
r3: b→d 0.10 0.50 0.02
r4: c→d 0.20 0.40 0.10
r5: d→a 0.20 0.33 0.02
r6: d→c 0.20 0.33 0.10
r7: c→b 0.10 0.20 0.01
r8: d→b 0.10 0.17 0.02

(b) A table relation Ω(R,M)

Name Definition Domain

Frequency
supp(X∪Y )

|D|
[0, 1]

Confidence
supp(X∪Y )

supp(X)
[0, 1]

Pearl
supp(X)

|D|
× | supp(X∪Y )

supp(X)
− supp(Y )

|D|
| [0, 1]

(c) Some measures of M

Table 1: Example of a dataset transaction and mea-
sures.

2.1 Association rules

Let I be a set of literals called items, an itemset cor-
responds to a non null subset of I. These itemsets are
gathered together in the set L : L = 2I\∅. In a transac-
tional dataset, each transaction contains an itemset of
L. Table 1(a) sketches a transactional dataset D where
10 transactions, denoted by t1, . . . , t10 described by
4 items denoted by a, b, c, d. The support of an item-
set X, denoted supp(X), is the number of transactions
containing X .

An association rule r is a relation between itemsets
of the form r: X→Y where X and Y are itemsets, and
X∩Y =∅. Itemsets X and Y are called, respectively,
premise and conclusion of r. The support of r is equal
to the number of transactions containing both X and
Y , supp(r)= supp(X∪Y). We notice that interesting
measures for association rules are usually defined using
support counts as presented in Table 1(b).

2.2 Dominance relationship

After mining association rules from a transactional
dataset D (e.g., Table 1(a)), a set R of rules is ob-
tained (e.g., Table 1(b) first column). Rules of R are
evaluated with respect to a setM of measures (e.g., Ta-
ble 1(c)) to form a relational table Ω (e.g., Table 1(b)).
Formally, Ω = (R,M) with the setM = {m1, . . ., mk}
of measures as attributes and the set R = {r1, . . ., rn}
of rules as objects. We denote by r[m] the value of the
measure m for the rule r, r ∈ R and m ∈ M. Since
the evaluation of rules varies from a measure to an-

other one, using several measures could lead to differ-
ent outputs (relevant rules with respect to a measure).
For example, r1, and r2 are the best two rules with
respect to the Confidence measure whereas it is not
the case according to the evaluation of Pearl measure
which favors r4 and r6. This difference of evaluations is
confusing for any process of rule selection or ranking.

Based on the above formulation of Ω, we can utilize
the notion of dominance between rules to address their
ranking as well as the selection of relevant ones. Before,
formulating the dominance relationship between rules
we need to define it at the level of measure values. To
do that, we define value dominance as follows:

Definition 1 (Value Dominance) Given two values of
a measure m corresponding to two rules r and r′, we
say that r[m] dominates r′[m], denoted by r[m] �
r′[m], iff r[m] is preferred to r′[m]. If r[m] � r′[m]
and r[m] 6= r′[m] then we say that r[m] strictly domi-
nates r′[m], denoted r[m] � r′[m].

To make the dominance relationship scale to the level
of rules, we give the following definition:

Definition 2 (Rule Dominance) Given two rules r, r′

∈ R, the dominance relationship according to the set
of measures M is defined as follows:

- r dominates r′, denoted r � r′, iff r[m] � r′[m],
∀ m ∈ M.

- If r � r′ and r′ � r, i.e., r[m] = r′[m], ∀ m ∈
M then r and r′ are said equivalent, denoted r
≡ r′.

- If r � r′ and ∃ m ∈ M such that r′[m] � r[m] ,
then r′ is strictly dominated by r and we note
r � r′.

It is easy to check that the strict dominance rela-
tionship fulfils the following properties:

- irreflexive: r 6� r, i.e, r � r is false for each m ∈
M,

- transitive: ∀ r, r′ and r′′ ∈ R, if r � r′ and r′ �
r′′ then r � r′′.

Example 1 Given the relation table Ω in Table 1(b),
the rule r3 strictly dominates r2 since r3[Freq] �
r2[Freq], r3[Conf ] � r2[Conf ] and r3[Pearl] �
r2[Pearl].

Whenever a rule r dominates another one r′ with
respect to M, this means that r is equivalent to or
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better than r′ for all measures. Hence, the dominance
relationship allows comparing concurrently two rules
with respect to all measures. Hence, it can be used to
bypass the problem of difference of evaluations. Rules
dominated by other ones (at least one), according to
M, are not relevant and have to be eliminated. The
skyline operator for association rules formalizes this
intuition.

Definition 3 (Skyline operator) The skyline of Ω over
M, denoted by SkyM(Ω), is the set of rules from Ω
defined as follows:

SkyM(Ω) = { r∈ R | 6 ∃ r′ ∈ R, r′ � r}

In other words, the skyline of Ω is the set of undomi-
nated rules of R with respect toM. For instance, from
the relation table Ω in Table 1(b), SkyM (Ω) = {r1, r4}
since there is no rule in R dominating r1 or r4.

3 DISCOVERING UNDOMI-

NATED RULES

To discover undominated rules, we adopt the princi-
ple of approaches oriented divide-and-conquer search
[KRR02] used for answering queries in database appli-
cations. In the following, we introduce the necessary
formalization that would be of need for the generation
of the undominated rules. Based on this formalization
we propose an algorithm, called SkyRule, that puts
the skyline operator.

3.1 Formalization

To discover the undominated rules, a näıve approach
consist in comparing each rule with all other ones. How-
ever, association rules are often present in huge number
which make it very costly to perform pairwise compar-
isons. In the following, we show how to remedy this
problem. First, we introduce the notion of reference
rule.

Definition 4 (Reference Rule) A reference rule r⊥ is
a fictitious rule that dominates all the rules of R. For-
mally: ∀ r ∈ R, r⊥�r.

Example 2 From the relational table Ω given in Table
1, we can consider r⊥ as the fictitious rule such that
for each measure m ∈ M, r⊥[m] is the maximal value
appearing in the active domain of m, i.e., r⊥ = 〈0.2,
0.67, 0.10〉. Hence, it does not exist any rule in R that
dominates r⊥.

In practice, measures are heterogenous and defined
within different domains. For our purpose, M have to
be normalized into M̂ within one interval [p,q]. In other
words, each measure m ∈ M must be normalized into
m̂ ∈ M̂ within [p,q]. The normalization of a given mea-
sure m is performed depending on its domain and the
statistical distribution of its active domain. We recall
that the active domain of a measure m is the set of its
values in Ω. The normalization is a statistical problem
which is beyond the scope of this paper. Worth of men-
tion, the normalization of a measure does not modify
the domination relationship between two given values.

Definition 5 (Degree of similarity) Given two rules r,
r′ ∈ R, the degree of similarity between r and r′ with
respect to M̂ is defined as follows:

DegSim(r, r′) =

∑k

i=1 | r[m̂i]− r′[m̂i] |

k

with | x − y | is the absolute value of (x − y), x and

y ∈ [p,q] and k = | M̂ |.

Example 3 Let’s consider our running example us-
ing the relation table Ω in Table 1(b). Since all
measures are defined within the same domain [0,1],
we can compute, without normalization, the degree
of similarity between each rule and the reference
rule given in the previous example. DegSim(r⊥,r1)
= 0.02, DegSim(r⊥,r2) = 0.12, DegSim(r⊥,r3) =
0.11, DegSim(r⊥,r4) = 0.09, DegSim(r⊥,r5) =
0.14, DegSim(r⊥,r6) = 0.11, DegSim(r⊥,r7) = 0.22,
DegSim(r⊥,r8) = 0.23.

After giving the necessary definitions (reference rule
and degree of similarity), the following lemma gives a
remedy to the issue evoked in the beginning of sec-
tion 3.1. Indeed, it offers a swifter solution rather than
pairwise comparisons; to find undominated rules.

Lemma 1 Let r ∈ R be a rule having the mini-
mal degree of similarity with respect to r⊥, then r ∈
SkyM(Ω).

Proof 1 Let r ∈ R be a rule having the minimal de-
gree of similarity with respect to r⊥ and we suppose
that r 6∈ SkyM(Ω), then there exists a rule r′ ∈ R
that strictly dominates r, which means that ∀ m ∈ M,
r′[m] � r[m] and ∃ m′ ∈ M, r′[m′] � r[m′]. Hence,
we have DegSim(r⊥,r′) < DegSim(r⊥,r). The latter
inequivalent contradicts our hypothesis, since r has the
minimal degree of similarity with respect to r⊥ .

4



After identifying an undominated rule r, the rules
dominated by r must be identified by comparing them
to r. Näıvely, r must be compared to all rules in R, yet
we show in the following that we can even reduce the
set of rules to be compared with r into a subset of R.

Definition 6 (undominated space) Let r be an un-
dominated rule. If there exists a rule r′ which is not
dominated by r such that r 6≡ r′, then there exists at
least a measure m ∈ M such that r′[m] � r[m]. Since
there exist k measures inM, then there are k sets such
that each one of them may contain rules not dominated
by r. For each measure mi ∈ M, i=1,...,k, the corre-
sponding set sr

i of rules which are not dominated by r
is defined as follows:

sr
i = { r′ ∈ R | r � r′ and r′[mi] � r [mi]}

These k sets compose the undominated space of r,
denoted Sr={sr

i }, i=1,...,k.

Example 4 From our toy example presented in Table
1(b), for the undominated rule r1, sr1

1 = ∅, we have
sr1
2 = ∅ and sr1

3 = {r4, r6}. sr1
1 and sr1

2 are empty
since there is no rule r ∈ R such that r[m1] � r1[m1]
or r[m2] � r1[m2]. However, sr1

3 contains r4 and r6

since r4[m3] � r1[m3] and r6[m3] � r1[m3]. Following
a similar reasoning, for the undominated rule r4, we
have sr4

1 = ∅, sr4
2 = {r1, r2, r3} and sr4

3 = ∅.

Lemma 2 Let r,r′ ∈ R be two undominated rules and
sr ∈ Sr. If r′ 6∈ sr, then ∀ r′′ ∈ sr, r′ 6�r′′.

Proof 2 Given r, r′ ∈ R two undominated rules and
sr ∈ Sr corresponding to a measure m ∈ M. If r′ 6∈
sr, then r′[m] � r[m] which means that r[m] � r′[m]
(1). Moreover, since r′′ ∈ sr then r′′[m] � r[m] (2).
According to the dominance transitivity, (1) and (2)
lead to r′′[m] � r′[m]. Hence, r′ 6�r′′.

Lemma 3 Let be r, r′ ∈ R and sr ∈ Sr such that r is
an undominated rule and r′ ∈ sr. If r′ has the minimal
degree of similarity with respect to r⊥ among the rules
in sr, then r′ ∈ SkyM(Ω).

Proof 3 Given r, r′ ∈ R and sr ∈ Sr such that r′

∈ sr and r′ has the minimal degree of similarity with
r⊥ among the rules in sr. Suppose that r′ 6∈ SkyM(Ω),
then it means that there exists a rule r′′ ∈ R such that
r′′�r′. According to lemma 2, r′′ must be in sr since
any rule not belonging to sr cannot dominate r′. More-
over, ∀ m ∈ M, r′′[m] � r′[m] and ∃ m′ ∈ M, r′′[m′]
� r′[m′]. Hence, DegSim(r⊥,r′′) < DegSim(r⊥,r′)
which contradicts our hypothesis since r′ has the min-
imal degree of similarity with r⊥ in sr.

3.2 SkyRule Algorithm

Based on the formalization, we proposed the SkyRule

algorithm allowing to discover undominated rules. In
SkyRule algorithm, we use the following variables for
accumulating data during the execution of the algo-
rithm:

- The variable Sky: is a variable initialized to empty
set, it is used to keep track of the undominated
rules.

- The variable C: is a variable that contains the set
of all current candidate rules to be qualified as
undominated; it is initialized to R.

- The variable E : is a variable that contains all cur-
rent set covering the undominated space of all un-
dominated rules; it is initialized to R since ini-
tially, all rules are considered undominated.

Algorithm 1: SkyRule

Input: Ω = (R, M)
Output: Sky: set of undominated rules of Ω.
Begin1

Sky ← ∅2

C ← R3

E ← {R}4

While C 6= ∅ do5

r∗ ← r ∈ C having min(DegSim(r,r⊥))6

C ← C\{r∗}7

for i=1 to k do8

sr∗

i ← ∅9

Sky ← Sky ∪ {r∗}10

Foreach e ∈ E such that r∗ ∈ s do11

Foreach r ∈ e do12

If r∗ � r then13

C ← C\{r}14

Else15

for i=1 to k do16

If r[mi] � r∗[mi] then17

sr∗

i ← sr∗

i ∪{r}18

E ← E\{e}19

E ← E ∪ {sr∗

1 , . . . , sr∗

k }20

return Sky21

End22

Informally, the algorithm works as follows:

- If the set of candidate rules C is empty, then the
algorithm terminates and all undominated rules
are outputted through the variable Sky.
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- Otherwise, each rule r in C might be an undomi-
nated one. If r has the minimal degree of similarity
with the reference rule r⊥, then r is an undomi-
nated rule and is added to Sky (i.e., r is no longer
candidate and is deleted from C). After that, only
the undominated space containing r is explored
as follows: for each rule r′, in this undominated
space, is compared with r. Two cases have to be
distinguished:

1. if r′ is dominated by r, then r is no longer
candidate and it is withdrawn from C.

2. otherwise, r′ is not dominated by r, i.e., r′

is still a candidate rule and it is added to
the undominated subspace of r according to
definition 6.

Then, the undominated space containing r is
deleted from E and the undominated space of r
is added to E . This process comes to an end when
all candidates are handled.

4 RANKING ASSOCIATION

RULES

The SkyRule algorithm allowed identifying the un-
dominated rules which are supposed to be the most rel-
evant ones. However, this output might not be enough
answer to a personalized user query. Indeed, the user
often needs a specified number of relevant rules which
may be more or less than what the SkyRule algorithm
generates. In the first case i.e., the user asks for a sub-
set of the undominated rules, a selection is required
among the SkyRule output. Since, SkyRule gener-
ates only relevant rules, the most relevant among them
must be returned to the user. This selection cannot be
performed unless a ranking has been done within the
undominated rules. In the second case i.e., the user
asks for a set of relevant rules larger than the set of
undominated rules, the rules that must be added to
the SkyRule output are necessarily a part from the
set of dominated rules. The composition of this part re-
quires a selection among all the dominated rules. This
selection cannot be performed unless a ranking has be
carried within the dominated rules. Hence, a ranking
process must be performed on the whole set of rules.

In the remainder, we introduce our second contribu-
tion: we show that we can perform a comprehensive
ranking using SkyRule. For this purpose, we give the
two following objective conditions:

1. Any dominated rule cannot be better ranked than
an undominated one.

2. Two undominated rules must be ranked based on
degree of similarity with respect to reference rule.

4.1 Succession relationship

In the following, we introduce the notion of succession
relationship. This notion is based on the dominance re-
lationship. First, we define it at the level of rules. Then,
we define it at the level of rule sets. Both definitions
are essential to state Lemma 4. That lemma puts the
corner stone of our approach that uses the skyline op-
erator to establish a ranking process. This process is
described by RankRule (c.f., Algorithm 2).

Definition 7 (Successor rule) Let’s consider two rules
r, r′ ∈ R, we say that r succeeds r′, denoted by r C r′

iff r′ � r and @ r′′ such that r′ � r′′ � r.

Example 5 Consider the relation table Ω in Table
1(b), then we have r6 C r4 but r5 6 r4 since r4 �
r6 � r5.

Definition 8 (Succession Operator) Let E be a set of
rules such that E ⊆ R . The successeur set of E in R
with respect to M is defined as follows: SuccM(E,R)
= { r ∈ R \ E | ∃ r′ ∈ E, r C r′ ∧ @ r′′ ∈ E, (r′′ �
r ∧ r 6 r′′)}

Example 6 Let’s consider our running example using
the relation table Ω in Table 1(b) and suppose E = {r1,
r4}. Then, we have r1 � r3 � r2, r1 � r5 � r7, r5 �
r8 and r4 � r6 � r5 then SuccM(E,R) = {r3, r6}.
Notice that, although r5 C r1, r5 6∈ SuccM(E,R) since
r5 6 r4.

Lemma 4 Given a set of rules E ⊆ R, the following
relation is fulfilled:

SuccM(SkyM(E),E) = SkyM(E\SkyM(E ))

Proof 4 Let E be a set of rules, such that E ⊆ R:
1. First we have to show that SuccM(SkyM(E),E) ⊆
SkyM(E\SkyM (E)):
Given, r ∈ SuccM(SkyM(E),E) then r ∈
E\SkyM(E). For all r′ ∈ SkyM(E), two cases
have to be distinguished:

- If r′ � r, then r C r′ which means that @ r′′ ∈
E\SkyM(E) such that r′ � r′′ � r.

- If r′ � r, then @ r′′ in E\SkyM(E) such that r′

� r′′ and r′′ � r

Thus, r cannot be dominated by any rule in
E\SkyM(E) i.e., r ∈ SkyM(E\SkyM(E)).
2. Second, we have to show that SuccM(SkyM(E),E)
⊇ SkyM(E\SkyM(E )):
Given r ∈ SkyM(E\SkyM(E )) then @ r′ ∈
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E\SkyM(E) such that r′ � r (a). Moreover, since r
∈ E\SkyM(E) then ∃ r′′ ∈ SkyM(E) such that r′′ �
r (b). Thus, (a) and (b) leads to that r C r′′ (c).
Furthermore, we suppose that ∃ r′ ∈ SkyM(E) such
that r1 � r and r 6 r1, then ∃ r2 ∈ E\SkyM(E) such
that r1 � r2 � r which contradicts our hypothesis (see
(a)). Thus, @ r2 ∈ E\SkyM(E) such that r1 � r2 �
r (d). Hence, according to (c) and (d), r belongs to
SuccM(SkyM(E),E).

Algorithm 2: RankRule

Input: Ω = (R, M)
Output: Ordered sets of ordered rules
Begin1

p ← 02

While R 6= ∅ do3

p ← p + 14

Ep ← SkyRule(Ω)5

R ← R\Ep6

Ω ← (R, M)7

return (E1, . . ., Ep)8

End9

Example 7 In this example, we apply the RankRule

algorithm on Ω of Table 1(b). Since, both r1 and r4 are
undominated rules then E1 = {r1, r4}. Now, we ignore
r1 and r4, the rules which are not dominated are r3

and r6. In fact, r3 is only dominated by r1 and r6 is
only dominated by r1, then E2 = {r3, r6}. Now we also
ignore r3 and r6, the rules which are not dominated are
r2 and r5. In fact, r2 is dominated by r3 and r5 is only
dominated by r6, then E3 = {r2, r5}. Finally, we have
E4 = {r7, r8}. This example is illustrated by Figure 1.
The arrow indicates the process direction starting from
the undominated rules. E1 contains the top ranked rules
which are themselves ranked within E1 from left to right
based on DegSim: r1 is better ranked than r4.

4.2 Duality

The RankRule algorithm performs ranking by start-
ing from the set of the most relevant rules (i.e., the
undominated rules). The latter are then used to iden-
tify the next ranked set (i.e., the successor). Never-
theless, another dual possibly remains explorable. It
relies on starting from the set of the less relevant rules
(i.e., rules that do not dominate other ones) and use
them to identify the previous ranked rule set that we
called it predecessor set. A complete formalization of

Figure 1: The output of RankRule applied on Ω given
by table 1(b).

this dual perspective is beyond the scope of this paper.
Nevertheless, we explain how it works by the following
illustrative example.

Example 8 We consider Ω of Table 1 (b). First, we
identify the set of rules which do not dominate any
other rules. These rules are r2, r7 and r8 then we have
E4 = {r2, r7, r8}. Now we have to ignore these rules.
The rules which do not dominate any other rules are
r3 and r5. In fact, r3 dominates only r2 and r5 domi-
nates only r7 and r8, then E1 = {r3, r5}. Now we also
ignore r3 and r5, The rules that do not dominate any
other rules are r1 and r6 since they dominate r3 and r5

respectively, then E2 = {r1, r6}. Finally, E1 = {r4}.

Figure 2: The dual RankRule applied on Ω given ta-
ble 1(b).
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5 EXPERIMENTAL STUDY

In this section, our objectives are at number of two.
First, we show through extensive experiments that
SkyRule provides interesting instance reduction com-
pared to the initial set of rules. Second, we assess
whether the number of measures has any uniform im-
pact on the number of undominated rules. These exper-
iments were carried out on benchmark datasets taken
from the UCI Machine Learning Repository. Table 2
summarizes the characteristics of these datasets. All
the tests were performed on a 1.73 GHz Intel proces-
sor with Linux operating system and 2 GB of RAM
memory.

Dataset ] items ] transactions Avg. size of

transactions

Diabete 75 3196 37

F lare 39 1389 10

Iris 119 8124 23

Monks1 19 124 7

Monks2 19 169 7

Monks3 19 122 7

Nursery 32 12960 9

Zoo 42 101 9

Table 2: Benchmark dataset characteristics.

5.1 Reduction of number of rules

In this subsection, we show the ability of our approach
to considerably reduce the huge numbers of rules gener-
ated from our experimental datasets. Our experiments
batch aims to compare our approach to another one
based on thresholds. For this purpose, we assign for
each measure m ∈ M, a threshold εm such that εm is
the minimum value of the skyrules with respect to m,
i.e., εm = min{r[m] | r ∈ SkyM (Ω)}. This ensures that
all undominated rules will be generated from the algo-
rithm based on thresholds. For instance, in our running
example (c.f., Table 1(b)), εfreq = 0.10, εconf = 0.17
and εpearl = 0.00. The set of resulting rules is called
the threshold-based rules denoted by TB rules. These
experiments have the benefit of quantifying the reduc-
tion of rules brought by SkyRules in the case where a
user is able to perfectly specify thresholds for mining
association rules algorithm based on thresholds. Hence,
we compare the number of undominated rules with re-
spect to that of TB rules and the total number of asso-
ciation rules (denoted A-R). We considered a number
of combinations of measures: Confidence [AIS93], Re-
call [LFZ99], Pearl [Pea88], Loevinger [Loe47], Zhang
[Zha00].

For each set of measures, Table 3 compares the size
of undominated rules versus that of TB rules and that
of all association rules. The goal is to illustrate the
problem of the huge number of association rules even
with threshold-based algorithm which makes difficult
to discover interesting ones. In contrast, the number of
undominated rules is always low and does not exceed
9784. Interestingly, the gain of a undominated rules is
always important (very high in almost all datasets).
Table 4 summarizes this result by sketching, for each
set of measures, the minimal/average/maximal number
of undominated rules, the average number of TB rules
and the average gain of undominated rules versus the
TB rules. The average gain rate is measured as follows:
size of TB rules

size of Sky-R .

5.2 Impact of measure variation on the

number of rules

In what follows, we put the focus on the evolution of the
undominated rules cardinalities with respect to mea-
sure variation. Table 3 shows the effect of variation of
M on undominated rules, TB rules and all rules. We
can notice that the number of all rules is obviously
constant. In contrast, the number of TB rules is sen-
sitive to the variation of cardinality of M. Indeed, by
adding each time a measure to M, the number of TB
rules decreases. However, the number of undominated
rules may decrease or increase. The decrease can be
explained by the fact that an association rule can be
undominated with respect to a set of measure M1 and
dominated with respect to M2, such that M1 ⊂ M2.
For example, if two rules r and r′ are equivalent and
undominated with respect to M1, there is a possibility
that one of them dominates the other by considering
one more measure. On the other hand, the increase can
be explained by the fact that an association rule can be
dominated with respect to M1 and undominated with
respect to M2. For example, consider a rule r which
dominates another r′ with respect to M1, by adding a
mesure m to M1, such that r′[m] � r[m], then r′ is no
longer dominated by r.

6 CONCLUSION

In this paper, we introduced an approach that ad-
dresses the problem of rule selection and ranking. This
approach is not hindered by the abundance of mea-
sures which is the issue of several works. These works
have been devoted to measure selection in order to find
one best measure, whereas the real issue lies in select-

8



Table 3: Undominated rules vs TB rules and All rules
Datasets {Conf; {Conf; {Conf; {Conf; {Conf;Pearl; {Conf;Loev; {Conf;Loev;Pearl;

(minfreq %) Loev} Pearl} Recall} Zhang} Recall} Zhang} Recall;Zhang}

Diabetes
Sky-R 3411 9 6651 2996 9 171 171
TB-R 59314 58124 59206 59309 44813 44602 42126

(10,00) A-R 62132 62132 62132 62132 62132 62132 62132

Flare
Sky-R 4975 48 4978 4857 48 48 48
TB-R 56163 57101 56451 54524 53197 53116 52819

(10,00) A-R 57476 57476 57476 57476 57476 57476 57476

Iris
Sky-R 246 246 246 246 246 246 246
TB-R 440 440 440 440 440 440 440

(0,00) A-R 440 440 440 440 440 440 440

Monks1
Sky-R 768 1 788 656 1 1 1
TB-R 60417 60692 59418 59452 58904 58811 58327

(1,00) A-R 62184 62184 62184 62184 62184 62184 62184

Monks2
Sky-R 279 3 215 202 3 3 3
TB-R 59611 59702 59568 59544 59103 58917 58662

(1,00) A-R 59976 59976 59976 59976 59976 59976 59976

Monks3
Sky-R 1028 2 713 781 4 2 2
TB-R 58662 58369 57922 58436 57816 57734 56038

(1,00) A-R 59304 59304 59304 59304 59304 59304 59304

Nursery
Sky-R 497 2 304 342 8 2 2
TB-R 23872 23901 23875 23417 23176 22806 22139

(2,00) A-R 25062 25062 25062 25062 25062 25062 25062

Zoo
Sky-R 9784 36 9415 9112 36 36 36
TB-R 67991 67305 67872 66146 65328 65116 63926

(10,00) A-R 71302 71302 71302 71302 71302 71302 71302

Table 4: Gain of the undominated rules

Measures
Average number Average number Average gain

of Sky-R of TB-R of Sky-R
{Conf;Loev} 2623,50 48308,75 18,41
{Conf;Pearl} 43,37 40908,12 943,23
{Conf;Recall} 2913,75 48094,00 16,50
{Conf;Zhang} 2399,00 47658,50 19,86

{Conf;Loev;Recall} 43,37 45347,12 1045,58
{Conf;Pearl;Zhang} 63,62 45192,75 710,35

{Conf;Loev;Pearl;Recall;Zhang} 63,62 44309,62 696,47

ing and ranking rules to help with decision making. We
proposed two algorithms SkyRule and RankRule to
perform these two tasks based on the dominance rela-
tionship. When using our algorithms, the user does not
have to worry neither about the heterogeneity of mea-
sures nor about specifying thresholds. On the other
hand, experimental results carried out on benchmark
datasets showed important profits in terms of compact-
ness of the undominated rules.

An important direction for future work is to take
into account similarity between rules in order to elim-
inate redundant undominated rules. Indeed, similar
rules often have the same quality i.e., they have al-
most identical values for the various measures. Another
important task consists on setting up an approach aim-
ing at discovering undominated rules during the phase
of the extraction rules which will improve the perfor-
mance of the SkyRule algorithm. Finally, an impor-
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tante prospective is to plan to formalize the dual of
RankRule and to find the relationship between them
that allows to obtain the output of one of them from
the output of the other.
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vit, and Bruno Crémilleux. Mining domi-
nant patterns in the sky. In ICDM, pages
655–664, 2011.

[Ste86] R. Steuer. Multiple Criteria Optimiza-
tion: Theory, Computation and Applica-
tion. (John Wiley, 546), 1986.

[TEO01] Kian-Lee Tan, Pin-Kwang Eng, and
Beng Chin Ooi. Efficient progressive sky-
line computation. In VLDB, pages 301–
310, 2001.

[TKS02] P. Tan, V. Kumar, and J. Srivastava. Se-
lecting the right interestingness measure for
association patterns. In Proceedings of the
8th ACM SIGKDD, pages 32–41, 2002.
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