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Résumé
The ensemble methods are very popular and can improve

significantly the performance of classification and cluste-
ring algorithms. Their principle is to generate a set of dif-
ferent models, then aggregated them into only one. Recent
works have shown that this approach could also be useful in
the biclustering problems.The crucial step of this approach
is the consensus functions that compute the aggregation of
the biclusters. We identify the main consensus functions
commonly used in the clustering ensemble and show how
to extend them in the biclustering context. We evaluate and
analyze the performances of these consensus functions on
several experiments based on both artificial and real data.

Keywords : Biclustering, Ensemble methods, Consensus
functions.

1 Introduction
Biclustering, also called direct clustering [Har72], co-

clustering [DMM03], simultaneous clustering in [Gov95,
TBK05] or block clustering in [GN03] is now a widely used
method of data mining in various domains in particular in
text mining and bioinformatics. For instance, in document
clustering, in [Dhi01] the author has proposed a spectral
block clustering method which makes use of the clear dua-
lity between rows (documents) and columns (words). In the
analysis of microarray data, where data are often presen-
ted as matrices of expression levels of genes under different
conditions, the co- clustering of genes and conditions has
overcamed the problem encountered in conventional clus-
tering methods concerning the choice of similarity. Cheng
and Church [CC00] were the first to propose a bicluste-
ring algorithm for microarray data analysis. They consi-
dered that biclusters follow an additive model and used a

∗blaise.hanczar@parisdescartes.fr

greedy iterative search to minimize the mean square resi-
due (MSR). Their algorithm identifies the biclusters one by
one and applied to yeast cell cycle data, it has enabled to
identify several biologically relevant biclusters. Lazzeroni
and Owen [LO00] have proposed the popular plaid model
which has been improved by Turner et al. [TBK05]. The
authors assumed that biclusters are organized in layers and
follow a given statistical model incorporating additive two
way ANOVA models. The search approach is iterative :
once (K − 1) layers (biclusters) have been identified, the
K-th bicluster minimizing a merit function depending on all
layers is selected. Applied to data from the yeast, the pro-
posed algorithm reveals that genes in biclusters share the
same biological functions. In [ES10] the authors have de-
veloped its localization procedure which improves the per-
formance of a greedy iterative biclustering algorithm. Seve-
ral other methods have been proposed in the literature, two
complete surveys of biclustering methods can be found in
[MO04, BPP08].

Here we propose to use the ensemble methods to improve
the performance of the biclustering. It is important to note
that we do not propose a new biclustering method in com-
petition with the previously cited algorithms. We seek to
adapt the ensemble approach to the biclustering problem in
order to improve the performance of any biclustering al-
gorithm. The principle of the ensemble biclustering is to
generate a set of different biclustering solutions, then ag-
gregated them into only one solution. The crucial step is
based on the consensus functions computing the aggrega-
tion of the different solutions. In this paper we have identi-
fied four types of consensus function commonly used in the
ensemble clustering and giving the best results. We show
how extend their use in the biclustering context. We eva-
luate their performances on a set of both numerical and real
data experiments.

The paper is organized as follows. In Section 2, we re-
view the ensemble methods in clustering and biclustering.
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In section 3, we formalize the collection of biclustering
solution and show how to construct it from the Cheng &
Church algorithm that we have retained for our study. In
section 3, we extend four commonly used consensus func-
tions to biclustering context. Section 5 is devoted to eva-
luate these new consensus functions on several experimen-
tations. Finally, we summarize the main points arising from
approach.

2 Ensemble Methods

The principle of ensemble methods is to construct a set
of models, then to aggregate them into a single model. It is
well-known that these methods often perform better than a
single model [Die00]. Ensemble methods first appeared in
supervised learning problems. A combination of classifiers
is more accurate than single classifiers [Mac97]. A pioneer
method boosting, the most popular algorithm of which is
adaboost, was developed mainly by Shapire [Sch03]. The
principle is to assign a weight to each training example, then
several classifiers are learned iteratively and between each
learning step the weight of examples is adjusted depending
on the classifier results. The final classifier is a weighted
vote of classifiers constructed during the procedure. Ano-
ther type of popular ensemble methods is bagging, propo-
sed by Breiman [Bre96]. The principle is to create a set a
classifiers based on bootstrap samples of the original data.
The random forests [Bre01] are the most famous application
of bagging. They are a combination of tree predictors, and
have given very good results in many domains [DUAdA06].

Several works have shown that ensemble methods can
also be used in unsupervised learning. Topchy et al.
[TLJF04] have theoretically shown that ensemble methods
may improve the performance clustering. The principle of
boosting has been exploited by Frossyniotis et al. [FLS04]
in order to provide a consistent partitioning of the data. The
boost-clustering approach creates, at each iteration, a new
training set using weighted random sampling from original
data, and a simple clustering algorithm is applied to pro-
vide new clusters. Dudoit and Fridlyand [DF03] have used
bagging to improve the accuracy of clustering in reducing
the variability of the PAM (Partitioning Around Medoids)
results [vdLPB03]. Their method has been applied to leu-
kemia and melanoma datasets and has allowed to differen-
tiate the different subtypes of tissues. Strehl et al. [SG02]
have proposed an approach to combine multiple partitioning
obtained from different sources into a single one. They in-
troduced an heuristics based on a voting consensus. Each
example is assigned to one cluster for each partition, an
example has therefore many assignments as number of par-
titions in the collection. In the aggregated partition, the

example is assigned to the cluster with whom it was the
most often assigned. One problem of this consensus is that
requires knowledge of the cluster correspondence between
the different partitions. They have also proposed a cluster-
based similarity partitioning algorithm. The collection is
used to compute a similarity matrix of the examples. The
similarity between two examples is based on the frequency
of their co-association to the same cluster over the collec-
tion. The aggregated partition is computed by a clustering of
the examples from this similarity matrix. Fern [FB04] for-
malizes the aggregation procedure by a bipartite graph par-
titioning. The collection is represented by a bipartite graph.
The examples and clusters of partitions are the two sets of
vertices. An edge between an examples and a cluster means
that example has been assigned to this cluster. A partition
of the graph is performed and each sub-graph represents
an aggregated cluster. Topchy [TJP04] proposes to mode-
lize the consensus of the collection by a multinomial mix-
ture model. In the collection, each example is defined by a
set of labels that represents their assigned clusters in each
partition. This can be viewed as a new space in which are
defined the examples, each dimension being a partition of
the collection. The aggregated partition is computed from
a clustering of examples in this new space. Since the la-
bels are discrete variables, a multinomial mixture model is
used. Each component of the model represents an aggrega-
ted cluster.

Some recent works have shown that the ensemble ap-
proach can also be useful in the biclustering problems
[HN12]. A bagging version of the biclustering algorithms
has been proposed and tested for microarray data [HN10].
Although this last method improves of performance of
the biclustering, in some cases it fails and returns empty
biclusters, i.e. without examples or features. The reason
comes from the consensus function that handles the set of
examples and features on the same dimension as in the
clustering context. The consensus function must respect the
structure of the biclusters. For this reason, the consensus
functions cited above, can be applied on biclustering pro-
blems. On this paper we adapt these consensus functions to
the biclustering context.

3 Biclustering Solution Collection

The first step of ensemble biclustering is to generate a
collection of biclustering solution. Here we give the forma-
lization of the collection and a method to generate it from
the Cheng and Church algorithm that we have retained for
our study.
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3.1 Formalization of the collection
Let’s a data matrixX = {E,F} whereE = {e1, ..., eN}

is the set of N examples represented by M-dimensional vec-
tors and F = {f1, ..., fM} is the set of M features repre-
sented by N-dimensional vectors. A bicluster B is a sub-
matrix of X defined by a subset of examples and a subset
of features : B = {(EB , FB)|EB ⊆ E, FB ⊆ F}. A bi-
clustering operator Φ is a function that returns a bicluste-
ring solution (i.e. a set of biclusters) from a data matrix :
Φ(X) = {B1, ..., BK} where K is the number of biclus-
ters. Let’s ϕ the function giving for each point of the data
matrix the labels of the bicluster to which it belongs. The
label is 0 for points belonging to no bicluster.

ϕ(xij) =

{
k if ei ∈ EBk

and fj ∈ FBk

0 if ei /∈ EBk
or fj /∈ FBk

∀k ∈ [1,K].

A biclustering solution can be represented by a label matrix
I giving for each point : Iij = ϕ(xij). In the following it
will be convenient to represent this label matrix by an label
vector indexing by u defined as u = i ∗ |F| + (|F| − j),
where |.| denotes the cardinality.

Let’s the true biclustering solution of the data set X re-
presented by Φ(X)∗, I∗ and J∗. An estimated biclustering
solution is a biclustering solution returned by an algorithm
from the data matrix, it is denoted by Φ̂(X), Î and Ĵ. The
objective of the biclustering task is to find the closest es-
timated biclustering solution from the true biclustering so-
lution. In ensemble methods, we do not use only one esti-
mated biclustering solutions but we generate a collection
of several solutions. We denote this collection of biclus-
tering solutions C = {Φ̂(X)(1), ..., Φ̂(X)(R)}. This col-
lection can be represented by an NM × R data matrix
J = (JT

1 , . . . ,J
T
NM )T in merging together all label vectors

Ju = (Ju1, . . . , JuR)
T where Jur = ϕ(xij)(r) with r ∈

[1, R]. The objective of the consensus function is to form
an aggregated biclustering solution, represented by Φ(X),
I and J, from the collection of estimated solution. Each of
these functions is illustrated through an example in Figure
1.

3.2 Construction of the collection
The key point of the generation of the collection is to find

a good trade-off between the quality and diversity of the bi-
clustering solutions of the collection. If all generated solu-
tions are the same, the aggregated solution will be identical
to the biclusters of the collection. Different sources of the
diversity are possible. We can use resampling method like
bootstrap or jacknife. In applying the biclustering operator
on each resampled data, different solutions are produced.
We can also include the source of diversity directly in the

biclustering operator. In this case the algorithm is not deter-
ministic and will produce different solutions from the same
original data.

In our experiments the biclustering operator is the Cheng
and Church algorithm (CC). This algorithm returns a set of
biclusters minimizing the mean square residue (MSR).

MSR(Bk) =
1

|Bk|
∑
i,j

zikwjk(Xij − µik − µjk + µk)
2,

where µk is the average of Bk, µik and µjk are respectively
the means of Ei and Fj belonging to the bicluster Bk.

The CC algorithm is iterative and the biclusters are iden-
tified one by one. To detect each bicluster, the algorithm
begins with all features and examples, then it drops the fea-
ture or example minimizing the mean square residue (MSR)
of the remaining matrix. This procedure is totally determi-
nistic. If the algorithm is ran several times, the same biclus-
tering solution will be find each time. We modify the CC
algorithm in including a source of diversity in the compu-
tation of the bicluster. At each iteration, we select the top
α% of the features and examples minimizing MSR of the
remaining matrix. The element to be dropped is randomly
chosen from this selection. Thus the parameter α controls
the level of diversity of the bicluster collection ; in our si-
mulations α = 5% appears a good threshold. This modified
version of the algorithm is used in all our experiments in or-
der to generate the collection of biclustering solution from
a dataset.

4 Consensus Functions for Bicluste-
ring

The second step of the ensemble approach is the aggrega-
tion of the collection of biclustering solutions. We present
here four consensus functions that we extend to the bicluste-
ring context. Note that these consensus function work even
if the numbers of biclusters in the different solutions of the
collection are not the equal.

4.1 Co-association Consensus (COAS)
This consensus is based on the bicluster assignation simi-

larity between the points of the data matrix. The similarity
between two points is defined by the proportion of times
that they are associated to the same bicluster over the whole
collection. All these similarities are represented by a dis-
tance matrix D defined by :

Duv = 1− 1

R

R∑
r=1

δ(Jur = Jvr),
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where δ(x) returns 0 when x is false and 1 when true. From
this dissimilarity data matrix, K + 1 clusters are identified
in using the Partioning Around Mediods (PAM) algorithm
[DF03]. Each cluster of points represents one aggregated
bicluster excepted the largest one that groups all points be-
longing to no bicluster.

4.2 Voting Consensus (VOTE)
This consensus function is based on the majority vote of

the labels. For each point of the data matrix, the consensus
returns the most represented label in the collection of the
biclustering solution. The main problem of this approach is
that there is no correspondence between the labels of two
different estimated biclustering solutions. All biclusters of
the collection have to be re-labeled according to their best
agreement with some chosen reference solution. Any esti-
mated solution can be used as reference, here we use the
first one Φ̂(X)(1). The agreement problem can be solved in
polynomial time by the Hungarian method [PS82] which re-
labels the estimated solution such as the similarity between
the solutions is maximized. The similarity between two bi-
clustering solutions is computed in using the F-measure (de-
tails in section 4). The label of the aggregated biclustering
solution for a point is therefore defined by :

Ju = argmax
k

(
R∑

r=1

δ(Γ(Jur) = k)

)
.

where Γ is the relabelling operator performed by the Hun-
garian algorithm.

4.3 Bipartite Graph Partitionning Consensus
(BGP)

In this consensus the collection of estimated solutions is
represented by a bipartite graph where the vertices are divi-
ded into two sets : the point vertices and the label vertices.
The point vertices represent the points of the data matrix
{(ei, fj)} while the set of label vertices represents all esti-
mated biclusters of the collection {B̂k,(r)}, for each estima-
ted solution there is also a vertice that represents the points
belonging to no bicluster. An edge links a point vertice to an
label vertice if the point belongs to the corresponding esti-
mated bicluster. The degree of each point is therefore R and
the degree of each estimated bicluster represents the num-
ber of points that it contains. Finding a consensus consists in
finding a partition of this bipartite graph. The optimal parti-
tion is the one that maximizes the numbers of edges inside
each cluster of nodes and minimizes the number of edges
between nodes of different clusters. This graph partitioning
problem is a NP-hard problem, so we rely on a heuristic

to an approximation of the optimal solution. We use a me-
thod based on a spin-glass model and simulated annealing
[RB06] in order to identified the clusters of nodes. Each
cluster of the partition represents an aggregated bicluster
formed by all points contained in this cluster.

4.4 Multivariate Mixture Model Consensus
(MIX)

In [TJP04], the authors have used the mixture approach
to propose a consensus function. In the sequel we propose
to extend it to our situation. In model-based clustering it is
assumed that the data are generated by a mixture of under-
lying probability distributions, where each component k of
the mixture represents a cluster. Specifically, the NM × R
data matrix J is assumed to be an J1, . . . ,Ju, . . . ,JNM

i.i.d sample where Ju from a probability distribution with
density

φ(Ju|Θ) =
K∑

k=0

πkPk(Ju|θk),

where Pk(Ju|θk) is the density of label Ju from the kth
component and the θk’s are the corresponding class parame-
ters. These densities belong to the same parametric family.
The parameter πk is the probability that an object belongs to
the kth component, and K, which is assumed to be known,
is the number of components in the mixture. The number of
components corresponds to the number of biclusters minus
one since one of the components represents the points be-
longing to no bicluster. The parameter of this model is the
vector Θ = (π0, . . . , πK , θ0, . . . , θK). The mixture density
of the observed data J can be expressed as

φ(J|Θ) =
NM∏
u=1

K∑
k=0

πkPk(Ju|θk).

The labels Ju are nominal categorical variables, we
consider the latent class model and assume that all
R categorical variables are independent, conditionnally
on their memebership of a component ; Pk(Ju|θk) =∏R

r=1 Pk,(r)(Jur|θk,(r)), Note that Pk,(r)(Ju|θk,(r)) repre-
sents the probability to have the vector label Ju in the
kth component for the estimated solution Φ̂(X)(r). If
α
r(j)
k is the probability that the rth label takes the va-

lue j when an Ju belongs to the component k, then the
probability of the mixture can be written Pk(Ju|θk) =∏R

r=1

∏K
j=1[α

r(j)
k ]δ(Jur=j). The parameter of the mixture

Θ is fitted in maximizing the likelihood function :

Θ∗ = argmax
Θ

(
log

(
NM∏
u=1

P (Ju|θ)

))
.
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The optimal solution of this maximization problem can not
generally be computed, we therefore rely on an estimation
given by the EM algorithm [DLR77]. In E-step, we compute
the posterior probabilities of each label suk ∝ Pk(Ju|θk)
and in the M-step we estimate the parameters of the mixture
as follows

πk =

∑
u suk
NM

and α
r(j)
k =

∑
u sukδ(Jur = j)∑

u suk
.

To limit the problems of local minimum during the EM
algorithm, we perform the optimization process ten times
with different initializations and keep the solution maximi-
zing the log-likelihood. At the convergnce, we consider that
the largest πk corresponds to labels representing the points
belonging to no biclusters. The estimators of posterior pro-
babilities give rise to a fuzzy or hard clustering using the
maximum a posteriori principle (MAP). Then the consensus
function consists in taking for each Ju the cluster k maxi-
mizing its conditional probability k = argmaxℓ=1,...,K suℓ,

and we obtain the ensemble solution Φ(X).

4.5 Reconstruction of the Biclusters
The four consensus functions presented above, return a

partition in K + 1 clusters of the points of the data matrix.
K of these clusters represent the K aggregated biclusters,
the last one groups all points that belong to no biclusters in
the aggregated solution. The k aggregated biclusters are not
actual biclusters yet. They are just sets of points that do not
necessarily form submatrices of the data matrix. A recons-
truction step has to be applied on each aggregated bicluster
in order to transform them in to a submatrice. This proce-
dure consist to find the submatrix containing the maximum
of points that are in the aggregated bicluster and the mini-
mum of points that are not in the aggregated bicluster. The
k-th aggregated bicluster is reconstructed in minimizing the
following function :

L(Bk) =
N∑
i=1

M∑
j=1

δ(ei ∈ EBk
∧ fi ∈ FBk

)δ(Iij ̸= k)

+ δ(ei /∈ EBk
∨ fi /∈ FBk

)δ(Iij = k).

This optimization problem is solved by an heuristic pro-
cedure. We start with all examples and features involving
in the aggregated bicluster. Then iteratively, we drop the
example or feature that maximizes the decrease of L(Bk).
This step is iterated until L(Bk) does not decrease. Once
the reconstruction procedure is finished, we obtain the fi-
nal aggregated biclusters. We give a last comment about the
number of biclusters K whose the choice is still an open
problem in unsupervised learning. Here the number of bi-
clusters K is given by the users. In almost all algorithms

the number of biclusters is a parameter or there a parame-
ter that controls indirectly this number. In consequence the
number of biclusters in each estimated solution is assumed
equal.

FIGURE 1 – Procedure of ensemble biclustering with the
four consensus functions.

5 Results and Discussion

5.1 Performance of consensus functions
In our simulations, we consider six different data struc-

tures with M = N = 100 in which a true biclustering
solution is included. The number of biclusters varies from

5



S1 S2 S3

S4 S5 S6

FIGURE 2 – Six data structures considered in the experi-
ments.

2 to 6 and their sizes from 10 examples by 10 features
to 30 examples by 30 features. We have defined six dif-
ferent structures of biclusters depicted in Figure 2. For each
data, from each true bicluster an estimated bicluster is ge-
nerated, then a collection of estimated biclustering solu-
tions is obtained. The quality of the collection is control-
led by the parameters αpre and αrec that are the average
precision and recall between estimated biclusters and their
corresponding true biclusters. To generate an estimated bi-
cluster we started with the true bicluster, then we have
randomly removed features/examples and have added fea-
tures/examples that were not in the true bicluster in order
to obtain the target precision αpre and recall αrec. Once
the collection is generated, the four consensus functions are
applied to obtain the aggregated biclustering solutions. Fi-
nally to evaluate the performance of each aggregated so-
lution we computed the F-measure (noted ∆) between the
obtained solution Φ(X) and the true biclustering solution
Φ(X)∗ ; ∆(Φ(X)∗,Φ(X)) = 1

K

∑K
k=1 MDice(B

∗
k , Bk)

where MDice(B
∗
k , Bk) =

|B∗
k∩Bk|

|B∗
k |+|Bk|

is the Dice measure.

Figure 3 shows the performance of the different consensus
in function on the size of the biclustering solution collection
R with αpre = αrec = 0.5. Each of the six panels gives the
results on the six data structures. The dot, triangle, cross
and diamond curves represent respectively the F-measure
in function of R for VOTE, COAS, BGP and MIX consen-
sus. The full gray curve represents the mean of the perfor-
mance of the biclustering collection. In the six panels, the
performance of collection is constant around 0.5. That is
not a surprise, since the performance of the collection does
not depend on its size and by construction the theoretical
performance of each estimated solution is 0.5. On the six
dataset structures, from R ≥ 40, all consensus functions
give much better performances than the estimated solutions
of the collection. The performances of MIX in all situations
are strongly increasing with the size of the collection. Mix
does not require a high value of R to record good result, for
R ≥ 20 it converges to their maximum and reaches 1 in all

panels. The curves of BGP have the same shape, they be-
gin with a strong increase then they converge to their maxi-
mums, but the increase phase is much longer than in MIX.
It also worth to note that BGP begins with very low per-
formances for small values of R, it is often lower than the
performances of the collection. BGP reaches its best perfor-
mances with R ≥ 60, in four panels it obtains the second
best results and the third on the two last panels. The perfor-
mance of VOTE increases slowly and more or less linearly
with the collection size. Even with very low values of R, the
performance of the consensus is significantly better than the
collection. VOTE gives the second best performances for S1
and S5 and the third best for the four other data structures.
The performance of COAS is about constant whatever R ; it
obtains the worst results in all panels.

Figure 4 shows the performances of the different consensus
in function of the performances of the estimated solution
collection controlled by the parameter α = αpre = αrec.
The performances of all consensus are naturally decreasing
with α. By definition the performances of the collection fol-
low the line y = 1 − x. For α ≤ 0.4 and in all cases the
consensus functions give the almost perfect biclustering so-
lution with ∆ ≈ 1, expected for COAS in S4. MIX is still
clearly the best consensus, it produces almost the perfect
biclustering and its performances are never less than 0.9.
BGP is the second best consensus, it is always significantly
better than the collection whatever the value of α. VOTE
and COAS have similar behavior. They begin with the per-
fect biclustering solution then, when α ≥ 0.5, their per-
formances decrease and are at best, for VOTE, around the
collection performance.

The F-measure can be decomposed into a combination
of precision and recall. In looking the results in detail we
see that for VOTE and COAS the precision is much greater
than the recall. That means these consensus produce smal-
ler biclusters than the true ones, the features and examples
associated to biclusters are generally good but these biclus-
ters are incomplete i.e. examples and features are missing.
In the opposite BGP produces biclusters with high recall
and low precision. The aggregated biclusters are generally
complete but they also contain some extra wrong features
and examples. MIX gives equilibrated biclusters with equal
precision and recall. The experiment on S4 allows to ob-
serve the influence of the size of the biclusters on the re-
sults. We see that COAS obtains very bad performance on
the small biclusters, since the recall on two smallest biclus-
ters is 0. MIX, VOTE, COAS are independent of the size of
the biclusters, their performances are similar with the four
biclusters.
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S1 S2 S3

S4 S5 S6

◦ : VOTE, △ : COAS, + : BGP, ♢ : MIX.

FIGURE 3 – Performance of the consensus in function of R (size of the biclustering solution collection) with αpre =
αrec = 0.5.

S1 S2 S3

S4 S5 S6

◦ : VOTE, △ : COAS, + : BGP, ♢ : MIX.

FIGURE 4 – Performance of the consensus in function on the mean precision αpre and recall αrec of the biclustering
solution collection with α = αpre = αrec.

5.2 Computing time

Although the performances of consensus functions are
good, they have also some critical drawbacks. The use of
these methods requires large amount of resources. Table 1

gives the computing time of each consensus function with
R = 50. VOTE is the fastest method followed by MIX
which is about ten times slower than VOTE, this inconve-
nient can be overcomed by using the eLEM algorithm pro-
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TABLE 1 – Computing time (in s) of the consensus func-
tions.

S1 S2 S3 S4 S5 S6
VOTE 2.6 2.9 2.8 2.6 2.5 2.5
MIX 13.1 28.5 60.7 54 12.3 10.8
COAS 199.6 205.6 234.1 240.8 247.4 248.1
BGP 2502 3147.2 3345.1 3043.5 2806.6 2834.5

posed in [JN07] or the classification EM algorithm [CG93].
COAS is the third, about ten times slower than MIX and
BGP needs the most computing time, about ten times more
than COAS. In observing S1, S2, S3 we note that the num-
ber of biclusters has an impact of the computing time, spe-
cially for MIX. VOTE and MIX require loading a NM ×R
matrix than contain all labels of the collection. BGP has to
generate a graph containing NM +R vertices while COAS
requires computing resources for large distance matrices of
size NM ×NM . When the dimension are large, these me-
thods may become intractable.

5.3 Results on real data
To evaluate our approach in performance term on real da-

tasets, we have used four datasets :
– Nutt : Gene expression data on the classification of

gliomas in brain.
– Pomeroy : Gene expression data on different types of

tumor in the central nervous system.
– Sonar : Sonar signal from metal objects or rocks.
– Wdbc : Biological data on breast cancer.

The description of these datasets in size term is given in
Table 2.

TABLE 2 – Description of the four datasets

Data sets N M
Nutt 50 500

Pomeroy 42 500
Sonar 208 60
Wdbc 569 30

Unlike to numerical experimental and since we do not
known the true biclustering solutions, the measures of per-
formance can be based on external indices, like Dice score.
Obviously, the quality of a biclustering solution can be mea-
sured by the AMSR i.e. the average of MSR computed from
each bicluster belonging to the biclustering solution ; the
lower AMSR, the better the solution. A problem of this ap-
proach is that the MSR is biased by the size of the biclusters.
Indeed, AMSR advantages the solutions given the smallest

biclusters. To remove this size bias we set the size of the
biclusters in the parameters of the algorithms. All methods
will therefore return biclusters of the same size. The better
solutions will be those minimizing AMSR. To compare the
different consensus functions, we compute their gain that is
the percentage of AMSR decreasing from the single biclus-
tering solution i.e. the solution obtained by the classic CC
algorithm without the ensemble approach. This is computed
by :

Gain = 100
AMSR(Φsingle)−AMSR(Φensemble)

AMSR(Φsingle)
,

where Φsingle and Φensemble are the biclustering solu-
tion returned respectively by the single and ensemble ap-
proaches.

TABLE 3 – Gain of each consensus function on the four real
datasets in function of the size of the biclusters.

Nutt dataset
50 100 200 300 400 600 800

VOTE 94 64 18 20 34 27 27
MIX 13 3 43 39 36 18 3

COAS 28 37 14 14 32 5 6
BGP 73 68 74 1 30 22 16

Pomeroy dataset
50 100 200 300 400 600 800

VOTE 79 85 79 69 32 63 60
MIX 84 83 69 52 37 75 74

COAS 69 78 21 36 30 43 39
BGP 68 80 21 22 30 46 51

Sonar dataset
50 100 200 300 400 600 800

VOTE 20 30 41 75 93 86 88
MIX 29 47 55 88 92 77 82

COAS 28 17 33 45 72 36 76
BGP 34 51 50 46 20 21 32

Wdbc dataset
50 100 200 300 400 600 800

VOTE 15 20 28 20 4 11 3
MIX 26 19 42 32 23 21 12

COAS -4 -18 -15 -7 -17 -8 -25
BGP 6 13 37 31 2 10 -4

Table 3 gives the gain of each consensus function for all
datasets in function on the size of the biclusters. We observe
that :

– In all situations, all consencus functions give an in-
teresting gain, expected for COAS for Wdbc dataset.
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We know that in the merge process, once a cluster is
formed it does not undo what was previously done ;
no modifications or permutations of objects are there-
fore possible. This disadvantage can be a handicap for
COAS in some situations such as in Wdbc dataset.

– VOTE and MIX outperform BGP in most cases. In ad-
dition their behavior seem not depend on the size of bi-
clusters. In Nutt and Sonar datasets, their performance
has increased or decreased respectively.

– VOTE appears more efficient than MIX for Nutt data-
set which is the larger. However, the size of biclusters
seems unaffacted MIX in other experiments.

– The difference of performance between VOTE/MIX
and BGP/COAS is large. We observe that the size of
the bicluster may impact the performance of the me-
thods but there is no clear rule, it is only depending on
the data. Other investigations will be necessary.

In summary VOTE and MIX produce the best perfor-
mances, the third is BGP and the last is COAS. Knowing
that VOTE and MIX require less computing time than BGP,
both appear therefore more fruitful.

6 Conclusion

Unlike to the classical clustering context, the bicluste-
ring considers the both dimensions of the matrix in or-
der to produce homogeneous submatrices. In this work, we
have presented the approach of ensemble biclustering which
consists to generate a collection of biclustering solutions
then to aggregate them. Firstly, we have showed how to use
the CC algorithm to generate the collection. Secondly, for
the aggregation of the collection of biclustering solutions,
we have extended the use of four consensus functions com-
monly used in the clustering context. Thirdly we have eva-
luated the performance of each of them.

On simulated and real datasets, the ensemble approach
appears fruitful. The results show that it improves signifi-
cantly the performance of biclustering whatever the consen-
sus function among VOTE, MIX and BGP. Specifically,
VOTE and MIX give clearly the best results in all experi-
ments and require less computing than BGP. Then we re-
commend to use one of these two methods for the ensemble
biclustering problems.
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